Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnatb Structured version   Visualization version   GIF version

Theorem ltrnatb 40161
Description: The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnatb.b 𝐵 = (Base‘𝐾)
ltrnatb.a 𝐴 = (Atoms‘𝐾)
ltrnatb.h 𝐻 = (LHyp‘𝐾)
ltrnatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))

Proof of Theorem ltrnatb
StepHypRef Expression
1 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑃𝐵)
2 ltrnatb.b . . . . 5 𝐵 = (Base‘𝐾)
3 ltrnatb.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 ltrnatb.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrncl 40149 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹𝑃) ∈ 𝐵)
61, 52thd 265 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐵 ↔ (𝐹𝑃) ∈ 𝐵))
7 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1137 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐹𝑇)
9 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐾 ∈ HL)
10 hlop 39385 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
11 eqid 2736 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
122, 11op0cl 39207 . . . . . 6 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
139, 10, 123syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (0.‘𝐾) ∈ 𝐵)
14 eqid 2736 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
152, 14, 3, 4ltrncvr 40157 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((0.‘𝐾) ∈ 𝐵𝑃𝐵)) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃)))
167, 8, 13, 1, 15syl112anc 1376 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃)))
179, 10syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐾 ∈ OP)
18 simp1r 1199 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑊𝐻)
192, 3lhpbase 40022 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
2018, 19syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑊𝐵)
21 eqid 2736 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
222, 21, 11op0le 39209 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑊𝐵) → (0.‘𝐾)(le‘𝐾)𝑊)
2317, 20, 22syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (0.‘𝐾)(le‘𝐾)𝑊)
242, 21, 3, 4ltrnval1 40158 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((0.‘𝐾) ∈ 𝐵 ∧ (0.‘𝐾)(le‘𝐾)𝑊)) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾))
257, 8, 13, 23, 24syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾))
2625breq1d 5134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃) ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃)))
2716, 26bitrd 279 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃)))
286, 27anbi12d 632 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
29 ltrnatb.a . . . 4 𝐴 = (Atoms‘𝐾)
302, 11, 14, 29isat 39309 . . 3 (𝐾 ∈ HL → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃)))
319, 30syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃)))
322, 11, 14, 29isat 39309 . . 3 (𝐾 ∈ HL → ((𝐹𝑃) ∈ 𝐴 ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
339, 32syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹𝑃) ∈ 𝐴 ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
3428, 31, 333bitr4d 311 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  0.cp0 18438  OPcops 39195  ccvr 39285  Atomscatm 39286  HLchlt 39373  LHypclh 40008  LTrncltrn 40125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-plt 18345  df-glb 18362  df-p0 18440  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-hlat 39374  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129
This theorem is referenced by:  ltrncnvatb  40162  ltrnel  40163  ltrnat  40164
  Copyright terms: Public domain W3C validator