Proof of Theorem ltrnatb
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp3 1139 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝑃 ∈ 𝐵) | 
| 2 |  | ltrnatb.b | . . . . 5
⊢ 𝐵 = (Base‘𝐾) | 
| 3 |  | ltrnatb.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 4 |  | ltrnatb.t | . . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 5 | 2, 3, 4 | ltrncl 40127 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐹‘𝑃) ∈ 𝐵) | 
| 6 | 1, 5 | 2thd 265 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐵 ↔ (𝐹‘𝑃) ∈ 𝐵)) | 
| 7 |  | simp1 1137 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 8 |  | simp2 1138 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝐹 ∈ 𝑇) | 
| 9 |  | simp1l 1198 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝐾 ∈ HL) | 
| 10 |  | hlop 39363 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 11 |  | eqid 2737 | . . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 12 | 2, 11 | op0cl 39185 | . . . . . 6
⊢ (𝐾 ∈ OP →
(0.‘𝐾) ∈ 𝐵) | 
| 13 | 9, 10, 12 | 3syl 18 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (0.‘𝐾) ∈ 𝐵) | 
| 14 |  | eqid 2737 | . . . . . 6
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) | 
| 15 | 2, 14, 3, 4 | ltrncvr 40135 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((0.‘𝐾) ∈ 𝐵 ∧ 𝑃 ∈ 𝐵)) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹‘𝑃))) | 
| 16 | 7, 8, 13, 1, 15 | syl112anc 1376 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹‘𝑃))) | 
| 17 | 9, 10 | syl 17 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝐾 ∈ OP) | 
| 18 |  | simp1r 1199 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝑊 ∈ 𝐻) | 
| 19 | 2, 3 | lhpbase 40000 | . . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) | 
| 20 | 18, 19 | syl 17 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝑊 ∈ 𝐵) | 
| 21 |  | eqid 2737 | . . . . . . . 8
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 22 | 2, 21, 11 | op0le 39187 | . . . . . . 7
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)𝑊) | 
| 23 | 17, 20, 22 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)𝑊) | 
| 24 | 2, 21, 3, 4 | ltrnval1 40136 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((0.‘𝐾) ∈ 𝐵 ∧ (0.‘𝐾)(le‘𝐾)𝑊)) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾)) | 
| 25 | 7, 8, 13, 23, 24 | syl112anc 1376 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾)) | 
| 26 | 25 | breq1d 5153 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹‘𝑃) ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃))) | 
| 27 | 16, 26 | bitrd 279 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃))) | 
| 28 | 6, 27 | anbi12d 632 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝑃 ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) ↔ ((𝐹‘𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃)))) | 
| 29 |  | ltrnatb.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 30 | 2, 11, 14, 29 | isat 39287 | . . 3
⊢ (𝐾 ∈ HL → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃))) | 
| 31 | 9, 30 | syl 17 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃))) | 
| 32 | 2, 11, 14, 29 | isat 39287 | . . 3
⊢ (𝐾 ∈ HL → ((𝐹‘𝑃) ∈ 𝐴 ↔ ((𝐹‘𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃)))) | 
| 33 | 9, 32 | syl 17 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝐹‘𝑃) ∈ 𝐴 ↔ ((𝐹‘𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃)))) | 
| 34 | 28, 31, 33 | 3bitr4d 311 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |