Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnatb Structured version   Visualization version   GIF version

Theorem ltrnatb 40120
Description: The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnatb.b 𝐵 = (Base‘𝐾)
ltrnatb.a 𝐴 = (Atoms‘𝐾)
ltrnatb.h 𝐻 = (LHyp‘𝐾)
ltrnatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))

Proof of Theorem ltrnatb
StepHypRef Expression
1 simp3 1137 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑃𝐵)
2 ltrnatb.b . . . . 5 𝐵 = (Base‘𝐾)
3 ltrnatb.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 ltrnatb.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrncl 40108 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹𝑃) ∈ 𝐵)
61, 52thd 265 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐵 ↔ (𝐹𝑃) ∈ 𝐵))
7 simp1 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐹𝑇)
9 simp1l 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐾 ∈ HL)
10 hlop 39344 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
11 eqid 2735 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
122, 11op0cl 39166 . . . . . 6 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
139, 10, 123syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (0.‘𝐾) ∈ 𝐵)
14 eqid 2735 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
152, 14, 3, 4ltrncvr 40116 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((0.‘𝐾) ∈ 𝐵𝑃𝐵)) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃)))
167, 8, 13, 1, 15syl112anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃)))
179, 10syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐾 ∈ OP)
18 simp1r 1197 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑊𝐻)
192, 3lhpbase 39981 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
2018, 19syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑊𝐵)
21 eqid 2735 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
222, 21, 11op0le 39168 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑊𝐵) → (0.‘𝐾)(le‘𝐾)𝑊)
2317, 20, 22syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (0.‘𝐾)(le‘𝐾)𝑊)
242, 21, 3, 4ltrnval1 40117 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((0.‘𝐾) ∈ 𝐵 ∧ (0.‘𝐾)(le‘𝐾)𝑊)) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾))
257, 8, 13, 23, 24syl112anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾))
2625breq1d 5158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃) ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃)))
2716, 26bitrd 279 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃)))
286, 27anbi12d 632 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
29 ltrnatb.a . . . 4 𝐴 = (Atoms‘𝐾)
302, 11, 14, 29isat 39268 . . 3 (𝐾 ∈ HL → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃)))
319, 30syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃)))
322, 11, 14, 29isat 39268 . . 3 (𝐾 ∈ HL → ((𝐹𝑃) ∈ 𝐴 ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
339, 32syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹𝑃) ∈ 𝐴 ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
3428, 31, 333bitr4d 311 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  Basecbs 17245  lecple 17305  0.cp0 18481  OPcops 39154  ccvr 39244  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-plt 18388  df-glb 18405  df-p0 18483  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-hlat 39333  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088
This theorem is referenced by:  ltrncnvatb  40121  ltrnel  40122  ltrnat  40123
  Copyright terms: Public domain W3C validator