Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnatb Structured version   Visualization version   GIF version

Theorem ltrnatb 38151
Description: The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnatb.b 𝐵 = (Base‘𝐾)
ltrnatb.a 𝐴 = (Atoms‘𝐾)
ltrnatb.h 𝐻 = (LHyp‘𝐾)
ltrnatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))

Proof of Theorem ltrnatb
StepHypRef Expression
1 simp3 1137 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑃𝐵)
2 ltrnatb.b . . . . 5 𝐵 = (Base‘𝐾)
3 ltrnatb.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 ltrnatb.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrncl 38139 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹𝑃) ∈ 𝐵)
61, 52thd 264 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐵 ↔ (𝐹𝑃) ∈ 𝐵))
7 simp1 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐹𝑇)
9 simp1l 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐾 ∈ HL)
10 hlop 37376 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
11 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
122, 11op0cl 37198 . . . . . 6 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
139, 10, 123syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (0.‘𝐾) ∈ 𝐵)
14 eqid 2738 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
152, 14, 3, 4ltrncvr 38147 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((0.‘𝐾) ∈ 𝐵𝑃𝐵)) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃)))
167, 8, 13, 1, 15syl112anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃)))
179, 10syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝐾 ∈ OP)
18 simp1r 1197 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑊𝐻)
192, 3lhpbase 38012 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
2018, 19syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → 𝑊𝐵)
21 eqid 2738 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
222, 21, 11op0le 37200 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑊𝐵) → (0.‘𝐾)(le‘𝐾)𝑊)
2317, 20, 22syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (0.‘𝐾)(le‘𝐾)𝑊)
242, 21, 3, 4ltrnval1 38148 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((0.‘𝐾) ∈ 𝐵 ∧ (0.‘𝐾)(le‘𝐾)𝑊)) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾))
257, 8, 13, 23, 24syl112anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾))
2625breq1d 5084 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹𝑃) ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃)))
2716, 26bitrd 278 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃)))
286, 27anbi12d 631 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
29 ltrnatb.a . . . 4 𝐴 = (Atoms‘𝐾)
302, 11, 14, 29isat 37300 . . 3 (𝐾 ∈ HL → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃)))
319, 30syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃)))
322, 11, 14, 29isat 37300 . . 3 (𝐾 ∈ HL → ((𝐹𝑃) ∈ 𝐴 ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
339, 32syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹𝑃) ∈ 𝐴 ↔ ((𝐹𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹𝑃))))
3428, 31, 333bitr4d 311 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  0.cp0 18141  OPcops 37186  ccvr 37276  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-plt 18048  df-glb 18065  df-p0 18143  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-hlat 37365  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119
This theorem is referenced by:  ltrncnvatb  38152  ltrnel  38153  ltrnat  38154
  Copyright terms: Public domain W3C validator