Proof of Theorem ltrnatb
Step | Hyp | Ref
| Expression |
1 | | simp3 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝑃 ∈ 𝐵) |
2 | | ltrnatb.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
3 | | ltrnatb.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
4 | | ltrnatb.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
5 | 2, 3, 4 | ltrncl 38066 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐹‘𝑃) ∈ 𝐵) |
6 | 1, 5 | 2thd 264 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐵 ↔ (𝐹‘𝑃) ∈ 𝐵)) |
7 | | simp1 1134 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
8 | | simp2 1135 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝐹 ∈ 𝑇) |
9 | | simp1l 1195 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝐾 ∈ HL) |
10 | | hlop 37303 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) |
12 | 2, 11 | op0cl 37125 |
. . . . . 6
⊢ (𝐾 ∈ OP →
(0.‘𝐾) ∈ 𝐵) |
13 | 9, 10, 12 | 3syl 18 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (0.‘𝐾) ∈ 𝐵) |
14 | | eqid 2738 |
. . . . . 6
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
15 | 2, 14, 3, 4 | ltrncvr 38074 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((0.‘𝐾) ∈ 𝐵 ∧ 𝑃 ∈ 𝐵)) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹‘𝑃))) |
16 | 7, 8, 13, 1, 15 | syl112anc 1372 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹‘𝑃))) |
17 | 9, 10 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝐾 ∈ OP) |
18 | | simp1r 1196 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝑊 ∈ 𝐻) |
19 | 2, 3 | lhpbase 37939 |
. . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → 𝑊 ∈ 𝐵) |
21 | | eqid 2738 |
. . . . . . . 8
⊢
(le‘𝐾) =
(le‘𝐾) |
22 | 2, 21, 11 | op0le 37127 |
. . . . . . 7
⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)𝑊) |
23 | 17, 20, 22 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)𝑊) |
24 | 2, 21, 3, 4 | ltrnval1 38075 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((0.‘𝐾) ∈ 𝐵 ∧ (0.‘𝐾)(le‘𝐾)𝑊)) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾)) |
25 | 7, 8, 13, 23, 24 | syl112anc 1372 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐹‘(0.‘𝐾)) = (0.‘𝐾)) |
26 | 25 | breq1d 5080 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝐹‘(0.‘𝐾))( ⋖ ‘𝐾)(𝐹‘𝑃) ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃))) |
27 | 16, 26 | bitrd 278 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ↔ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃))) |
28 | 6, 27 | anbi12d 630 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝑃 ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) ↔ ((𝐹‘𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃)))) |
29 | | ltrnatb.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
30 | 2, 11, 14, 29 | isat 37227 |
. . 3
⊢ (𝐾 ∈ HL → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃))) |
31 | 9, 30 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃))) |
32 | 2, 11, 14, 29 | isat 37227 |
. . 3
⊢ (𝐾 ∈ HL → ((𝐹‘𝑃) ∈ 𝐴 ↔ ((𝐹‘𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃)))) |
33 | 9, 32 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝐹‘𝑃) ∈ 𝐴 ↔ ((𝐹‘𝑃) ∈ 𝐵 ∧ (0.‘𝐾)( ⋖ ‘𝐾)(𝐹‘𝑃)))) |
34 | 28, 31, 33 | 3bitr4d 310 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |