| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isblo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bloval.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| bloval.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| bloval.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| Ref | Expression |
|---|---|
| isblo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 2 | bloval.4 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 3 | bloval.5 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 4 | 1, 2, 3 | bloval 30743 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ 𝑇 ∈ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞})) |
| 6 | fveq2 6826 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑁‘𝑡) = (𝑁‘𝑇)) | |
| 7 | 6 | breq1d 5105 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝑁‘𝑡) < +∞ ↔ (𝑁‘𝑇) < +∞)) |
| 8 | 7 | elrab 3650 | . 2 ⊢ (𝑇 ∈ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞} ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞)) |
| 9 | 5, 8 | bitrdi 287 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 +∞cpnf 11165 < clt 11168 NrmCVeccnv 30546 LnOp clno 30702 normOpOLD cnmoo 30703 BLnOp cblo 30704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-blo 30708 |
| This theorem is referenced by: isblo2 30745 bloln 30746 nmblore 30748 isblo3i 30763 htthlem 30879 |
| Copyright terms: Public domain | W3C validator |