MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo Structured version   Visualization version   GIF version

Theorem isblo 30752
Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3 𝑁 = (𝑈 normOpOLD 𝑊)
bloval.4 𝐿 = (𝑈 LnOp 𝑊)
bloval.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
isblo ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞)))

Proof of Theorem isblo
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bloval.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2 bloval.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
3 bloval.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
41, 2, 3bloval 30751 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
54eleq2d 2815 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵𝑇 ∈ {𝑡𝐿 ∣ (𝑁𝑡) < +∞}))
6 fveq2 6817 . . . 4 (𝑡 = 𝑇 → (𝑁𝑡) = (𝑁𝑇))
76breq1d 5099 . . 3 (𝑡 = 𝑇 → ((𝑁𝑡) < +∞ ↔ (𝑁𝑇) < +∞))
87elrab 3645 . 2 (𝑇 ∈ {𝑡𝐿 ∣ (𝑁𝑡) < +∞} ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞))
95, 8bitrdi 287 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  {crab 3393   class class class wbr 5089  cfv 6477  (class class class)co 7341  +∞cpnf 11135   < clt 11138  NrmCVeccnv 30554   LnOp clno 30710   normOpOLD cnmoo 30711   BLnOp cblo 30712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-blo 30716
This theorem is referenced by:  isblo2  30753  bloln  30754  nmblore  30756  isblo3i  30771  htthlem  30887
  Copyright terms: Public domain W3C validator