![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isblo | Structured version Visualization version GIF version |
Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bloval.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
bloval.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
bloval.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
Ref | Expression |
---|---|
isblo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bloval.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
2 | bloval.4 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
3 | bloval.5 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
4 | 1, 2, 3 | bloval 30021 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
5 | 4 | eleq2d 2819 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ 𝑇 ∈ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞})) |
6 | fveq2 6888 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑁‘𝑡) = (𝑁‘𝑇)) | |
7 | 6 | breq1d 5157 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝑁‘𝑡) < +∞ ↔ (𝑁‘𝑇) < +∞)) |
8 | 7 | elrab 3682 | . 2 ⊢ (𝑇 ∈ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞} ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞)) |
9 | 5, 8 | bitrdi 286 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 +∞cpnf 11241 < clt 11244 NrmCVeccnv 29824 LnOp clno 29980 normOpOLD cnmoo 29981 BLnOp cblo 29982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-blo 29986 |
This theorem is referenced by: isblo2 30023 bloln 30024 nmblore 30026 isblo3i 30041 htthlem 30157 |
Copyright terms: Public domain | W3C validator |