| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isblo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bloval.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| bloval.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| bloval.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| Ref | Expression |
|---|---|
| isblo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 2 | bloval.4 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 3 | bloval.5 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 4 | 1, 2, 3 | bloval 30772 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) |
| 5 | 4 | eleq2d 2819 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ 𝑇 ∈ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞})) |
| 6 | fveq2 6831 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑁‘𝑡) = (𝑁‘𝑇)) | |
| 7 | 6 | breq1d 5105 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝑁‘𝑡) < +∞ ↔ (𝑁‘𝑇) < +∞)) |
| 8 | 7 | elrab 3644 | . 2 ⊢ (𝑇 ∈ {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞} ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞)) |
| 9 | 5, 8 | bitrdi 287 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3397 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 +∞cpnf 11153 < clt 11156 NrmCVeccnv 30575 LnOp clno 30731 normOpOLD cnmoo 30732 BLnOp cblo 30733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-blo 30737 |
| This theorem is referenced by: isblo2 30774 bloln 30775 nmblore 30777 isblo3i 30792 htthlem 30908 |
| Copyright terms: Public domain | W3C validator |