MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo Structured version   Visualization version   GIF version

Theorem isblo 28561
Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3 𝑁 = (𝑈 normOpOLD 𝑊)
bloval.4 𝐿 = (𝑈 LnOp 𝑊)
bloval.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
isblo ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞)))

Proof of Theorem isblo
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bloval.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2 bloval.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
3 bloval.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
41, 2, 3bloval 28560 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
54eleq2d 2900 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵𝑇 ∈ {𝑡𝐿 ∣ (𝑁𝑡) < +∞}))
6 fveq2 6672 . . . 4 (𝑡 = 𝑇 → (𝑁𝑡) = (𝑁𝑇))
76breq1d 5078 . . 3 (𝑡 = 𝑇 → ((𝑁𝑡) < +∞ ↔ (𝑁𝑇) < +∞))
87elrab 3682 . 2 (𝑇 ∈ {𝑡𝐿 ∣ (𝑁𝑡) < +∞} ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞))
95, 8syl6bb 289 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3144   class class class wbr 5068  cfv 6357  (class class class)co 7158  +∞cpnf 10674   < clt 10677  NrmCVeccnv 28363   LnOp clno 28519   normOpOLD cnmoo 28520   BLnOp cblo 28521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-blo 28525
This theorem is referenced by:  isblo2  28562  bloln  28563  nmblore  28565  isblo3i  28580  htthlem  28696
  Copyright terms: Public domain W3C validator