MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo Structured version   Visualization version   GIF version

Theorem isblo 30022
Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3 𝑁 = (𝑈 normOpOLD 𝑊)
bloval.4 𝐿 = (𝑈 LnOp 𝑊)
bloval.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
isblo ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞)))

Proof of Theorem isblo
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bloval.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
2 bloval.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
3 bloval.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
41, 2, 3bloval 30021 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡𝐿 ∣ (𝑁𝑡) < +∞})
54eleq2d 2819 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵𝑇 ∈ {𝑡𝐿 ∣ (𝑁𝑡) < +∞}))
6 fveq2 6888 . . . 4 (𝑡 = 𝑇 → (𝑁𝑡) = (𝑁𝑇))
76breq1d 5157 . . 3 (𝑡 = 𝑇 → ((𝑁𝑡) < +∞ ↔ (𝑁𝑇) < +∞))
87elrab 3682 . 2 (𝑇 ∈ {𝑡𝐿 ∣ (𝑁𝑡) < +∞} ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞))
95, 8bitrdi 286 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ (𝑁𝑇) < +∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3432   class class class wbr 5147  cfv 6540  (class class class)co 7405  +∞cpnf 11241   < clt 11244  NrmCVeccnv 29824   LnOp clno 29980   normOpOLD cnmoo 29981   BLnOp cblo 29982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-blo 29986
This theorem is referenced by:  isblo2  30023  bloln  30024  nmblore  30026  isblo3i  30041  htthlem  30157
  Copyright terms: Public domain W3C validator