MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo3i Structured version   Visualization version   GIF version

Theorem isblo3i 28572
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1 𝑋 = (BaseSet‘𝑈)
isblo3i.m 𝑀 = (normCV𝑈)
isblo3i.n 𝑁 = (normCV𝑊)
isblo3i.4 𝐿 = (𝑈 LnOp 𝑊)
isblo3i.5 𝐵 = (𝑈 BLnOp 𝑊)
isblo3i.u 𝑈 ∈ NrmCVec
isblo3i.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
isblo3i (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐿   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝐿(𝑦)

Proof of Theorem isblo3i
StepHypRef Expression
1 isblo3i.u . . . 4 𝑈 ∈ NrmCVec
2 isblo3i.w . . . 4 𝑊 ∈ NrmCVec
3 isblo3i.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
4 isblo3i.5 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
53, 4bloln 28555 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
61, 2, 5mp3an12 1447 . . 3 (𝑇𝐵𝑇𝐿)
7 isblo3i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
8 eqid 2821 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
9 eqid 2821 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
107, 8, 9, 4nmblore 28557 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
111, 2, 10mp3an12 1447 . . . 4 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
12 isblo3i.m . . . . . 6 𝑀 = (normCV𝑈)
13 isblo3i.n . . . . . 6 𝑁 = (normCV𝑊)
147, 12, 13, 9, 4, 1, 2nmblolbi 28571 . . . . 5 ((𝑇𝐵𝑦𝑋) → (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1514ralrimiva 3182 . . . 4 (𝑇𝐵 → ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
16 oveq1 7157 . . . . . . 7 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (𝑥 · (𝑀𝑦)) = (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1716breq2d 5071 . . . . . 6 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1817ralbidv 3197 . . . . 5 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1918rspcev 3623 . . . 4 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
2011, 15, 19syl2anc 586 . . 3 (𝑇𝐵 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
216, 20jca 514 . 2 (𝑇𝐵 → (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
22 simp1 1132 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐿)
237, 8, 3lnof 28526 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
241, 2, 23mp3an12 1447 . . . . . 6 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
257, 8, 9nmoxr 28537 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
261, 2, 25mp3an12 1447 . . . . . . . 8 (𝑇:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
27263ad2ant1 1129 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
28 recn 10621 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928abscld 14790 . . . . . . . . 9 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
3029rexrd 10685 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ*)
31303ad2ant2 1130 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) ∈ ℝ*)
32 pnfxr 10689 . . . . . . . 8 +∞ ∈ ℝ*
3332a1i 11 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → +∞ ∈ ℝ*)
347, 8, 12, 13, 9, 1, 2nmoub3i 28544 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ≤ (abs‘𝑥))
35 ltpnf 12509 . . . . . . . . 9 ((abs‘𝑥) ∈ ℝ → (abs‘𝑥) < +∞)
3629, 35syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) < +∞)
37363ad2ant2 1130 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) < +∞)
3827, 31, 33, 34, 37xrlelttrd 12547 . . . . . 6 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
3924, 38syl3an1 1159 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
409, 3, 4isblo 28553 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
411, 2, 40mp2an 690 . . . . 5 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞))
4222, 39, 41sylanbrc 585 . . . 4 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4342rexlimdv3a 3286 . . 3 (𝑇𝐿 → (∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) → 𝑇𝐵))
4443imp 409 . 2 ((𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4521, 44impbii 211 1 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139   class class class wbr 5059  wf 6346  cfv 6350  (class class class)co 7150  cr 10530   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  abscabs 14587  NrmCVeccnv 28355  BaseSetcba 28357  normCVcnmcv 28361   LnOp clno 28511   normOpOLD cnmoo 28512   BLnOp cblo 28513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-grpo 28264  df-gid 28265  df-ginv 28266  df-ablo 28316  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-nmcv 28371  df-lno 28515  df-nmoo 28516  df-blo 28517  df-0o 28518
This theorem is referenced by:  blo3i  28573  blocnilem  28575
  Copyright terms: Public domain W3C validator