MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo3i Structured version   Visualization version   GIF version

Theorem isblo3i 28269
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1 𝑋 = (BaseSet‘𝑈)
isblo3i.m 𝑀 = (normCV𝑈)
isblo3i.n 𝑁 = (normCV𝑊)
isblo3i.4 𝐿 = (𝑈 LnOp 𝑊)
isblo3i.5 𝐵 = (𝑈 BLnOp 𝑊)
isblo3i.u 𝑈 ∈ NrmCVec
isblo3i.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
isblo3i (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐿   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝐿(𝑦)

Proof of Theorem isblo3i
StepHypRef Expression
1 isblo3i.u . . . 4 𝑈 ∈ NrmCVec
2 isblo3i.w . . . 4 𝑊 ∈ NrmCVec
3 isblo3i.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
4 isblo3i.5 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
53, 4bloln 28252 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
61, 2, 5mp3an12 1443 . . 3 (𝑇𝐵𝑇𝐿)
7 isblo3i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
8 eqid 2795 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
9 eqid 2795 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
107, 8, 9, 4nmblore 28254 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
111, 2, 10mp3an12 1443 . . . 4 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
12 isblo3i.m . . . . . 6 𝑀 = (normCV𝑈)
13 isblo3i.n . . . . . 6 𝑁 = (normCV𝑊)
147, 12, 13, 9, 4, 1, 2nmblolbi 28268 . . . . 5 ((𝑇𝐵𝑦𝑋) → (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1514ralrimiva 3149 . . . 4 (𝑇𝐵 → ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
16 oveq1 7023 . . . . . . 7 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (𝑥 · (𝑀𝑦)) = (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1716breq2d 4974 . . . . . 6 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1817ralbidv 3164 . . . . 5 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1918rspcev 3559 . . . 4 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
2011, 15, 19syl2anc 584 . . 3 (𝑇𝐵 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
216, 20jca 512 . 2 (𝑇𝐵 → (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
22 simp1 1129 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐿)
237, 8, 3lnof 28223 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
241, 2, 23mp3an12 1443 . . . . . 6 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
257, 8, 9nmoxr 28234 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
261, 2, 25mp3an12 1443 . . . . . . . 8 (𝑇:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
27263ad2ant1 1126 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
28 recn 10473 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928abscld 14630 . . . . . . . . 9 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
3029rexrd 10537 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ*)
31303ad2ant2 1127 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) ∈ ℝ*)
32 pnfxr 10541 . . . . . . . 8 +∞ ∈ ℝ*
3332a1i 11 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → +∞ ∈ ℝ*)
347, 8, 12, 13, 9, 1, 2nmoub3i 28241 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ≤ (abs‘𝑥))
35 ltpnf 12365 . . . . . . . . 9 ((abs‘𝑥) ∈ ℝ → (abs‘𝑥) < +∞)
3629, 35syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) < +∞)
37363ad2ant2 1127 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) < +∞)
3827, 31, 33, 34, 37xrlelttrd 12403 . . . . . 6 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
3924, 38syl3an1 1156 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
409, 3, 4isblo 28250 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
411, 2, 40mp2an 688 . . . . 5 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞))
4222, 39, 41sylanbrc 583 . . . 4 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4342rexlimdv3a 3249 . . 3 (𝑇𝐿 → (∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) → 𝑇𝐵))
4443imp 407 . 2 ((𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4521, 44impbii 210 1 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105  wrex 3106   class class class wbr 4962  wf 6221  cfv 6225  (class class class)co 7016  cr 10382   · cmul 10388  +∞cpnf 10518  *cxr 10520   < clt 10521  cle 10522  abscabs 14427  NrmCVeccnv 28052  BaseSetcba 28054  normCVcnmcv 28058   LnOp clno 28208   normOpOLD cnmoo 28209   BLnOp cblo 28210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-grpo 27961  df-gid 27962  df-ginv 27963  df-ablo 28013  df-vc 28027  df-nv 28060  df-va 28063  df-ba 28064  df-sm 28065  df-0v 28066  df-nmcv 28068  df-lno 28212  df-nmoo 28213  df-blo 28214  df-0o 28215
This theorem is referenced by:  blo3i  28270  blocnilem  28272
  Copyright terms: Public domain W3C validator