MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo3i Structured version   Visualization version   GIF version

Theorem isblo3i 30031
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1 𝑋 = (BaseSet‘𝑈)
isblo3i.m 𝑀 = (normCV𝑈)
isblo3i.n 𝑁 = (normCV𝑊)
isblo3i.4 𝐿 = (𝑈 LnOp 𝑊)
isblo3i.5 𝐵 = (𝑈 BLnOp 𝑊)
isblo3i.u 𝑈 ∈ NrmCVec
isblo3i.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
isblo3i (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐿   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝐿(𝑦)

Proof of Theorem isblo3i
StepHypRef Expression
1 isblo3i.u . . . 4 𝑈 ∈ NrmCVec
2 isblo3i.w . . . 4 𝑊 ∈ NrmCVec
3 isblo3i.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
4 isblo3i.5 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
53, 4bloln 30014 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
61, 2, 5mp3an12 1452 . . 3 (𝑇𝐵𝑇𝐿)
7 isblo3i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
8 eqid 2733 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
9 eqid 2733 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
107, 8, 9, 4nmblore 30016 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
111, 2, 10mp3an12 1452 . . . 4 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
12 isblo3i.m . . . . . 6 𝑀 = (normCV𝑈)
13 isblo3i.n . . . . . 6 𝑁 = (normCV𝑊)
147, 12, 13, 9, 4, 1, 2nmblolbi 30030 . . . . 5 ((𝑇𝐵𝑦𝑋) → (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1514ralrimiva 3147 . . . 4 (𝑇𝐵 → ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
16 oveq1 7410 . . . . . . 7 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (𝑥 · (𝑀𝑦)) = (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1716breq2d 5158 . . . . . 6 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1817ralbidv 3178 . . . . 5 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1918rspcev 3611 . . . 4 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
2011, 15, 19syl2anc 585 . . 3 (𝑇𝐵 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
216, 20jca 513 . 2 (𝑇𝐵 → (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
22 simp1 1137 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐿)
237, 8, 3lnof 29985 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
241, 2, 23mp3an12 1452 . . . . . 6 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
257, 8, 9nmoxr 29996 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
261, 2, 25mp3an12 1452 . . . . . . . 8 (𝑇:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
27263ad2ant1 1134 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
28 recn 11195 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928abscld 15378 . . . . . . . . 9 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
3029rexrd 11259 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ*)
31303ad2ant2 1135 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) ∈ ℝ*)
32 pnfxr 11263 . . . . . . . 8 +∞ ∈ ℝ*
3332a1i 11 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → +∞ ∈ ℝ*)
347, 8, 12, 13, 9, 1, 2nmoub3i 30003 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ≤ (abs‘𝑥))
35 ltpnf 13095 . . . . . . . . 9 ((abs‘𝑥) ∈ ℝ → (abs‘𝑥) < +∞)
3629, 35syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) < +∞)
37363ad2ant2 1135 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) < +∞)
3827, 31, 33, 34, 37xrlelttrd 13134 . . . . . 6 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
3924, 38syl3an1 1164 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
409, 3, 4isblo 30012 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
411, 2, 40mp2an 691 . . . . 5 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞))
4222, 39, 41sylanbrc 584 . . . 4 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4342rexlimdv3a 3160 . . 3 (𝑇𝐿 → (∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) → 𝑇𝐵))
4443imp 408 . 2 ((𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4521, 44impbii 208 1 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071   class class class wbr 5146  wf 6535  cfv 6539  (class class class)co 7403  cr 11104   · cmul 11110  +∞cpnf 11240  *cxr 11242   < clt 11243  cle 11244  abscabs 15176  NrmCVeccnv 29814  BaseSetcba 29816  normCVcnmcv 29820   LnOp clno 29970   normOpOLD cnmoo 29971   BLnOp cblo 29972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-n0 12468  df-z 12554  df-uz 12818  df-rp 12970  df-seq 13962  df-exp 14023  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-grpo 29723  df-gid 29724  df-ginv 29725  df-ablo 29775  df-vc 29789  df-nv 29822  df-va 29825  df-ba 29826  df-sm 29827  df-0v 29828  df-nmcv 29830  df-lno 29974  df-nmoo 29975  df-blo 29976  df-0o 29977
This theorem is referenced by:  blo3i  30032  blocnilem  30034
  Copyright terms: Public domain W3C validator