MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo3i Structured version   Visualization version   GIF version

Theorem isblo3i 29064
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1 𝑋 = (BaseSet‘𝑈)
isblo3i.m 𝑀 = (normCV𝑈)
isblo3i.n 𝑁 = (normCV𝑊)
isblo3i.4 𝐿 = (𝑈 LnOp 𝑊)
isblo3i.5 𝐵 = (𝑈 BLnOp 𝑊)
isblo3i.u 𝑈 ∈ NrmCVec
isblo3i.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
isblo3i (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐿   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝐿(𝑦)

Proof of Theorem isblo3i
StepHypRef Expression
1 isblo3i.u . . . 4 𝑈 ∈ NrmCVec
2 isblo3i.w . . . 4 𝑊 ∈ NrmCVec
3 isblo3i.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
4 isblo3i.5 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
53, 4bloln 29047 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
61, 2, 5mp3an12 1449 . . 3 (𝑇𝐵𝑇𝐿)
7 isblo3i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
8 eqid 2738 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
9 eqid 2738 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
107, 8, 9, 4nmblore 29049 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
111, 2, 10mp3an12 1449 . . . 4 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
12 isblo3i.m . . . . . 6 𝑀 = (normCV𝑈)
13 isblo3i.n . . . . . 6 𝑁 = (normCV𝑊)
147, 12, 13, 9, 4, 1, 2nmblolbi 29063 . . . . 5 ((𝑇𝐵𝑦𝑋) → (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1514ralrimiva 3107 . . . 4 (𝑇𝐵 → ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
16 oveq1 7262 . . . . . . 7 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (𝑥 · (𝑀𝑦)) = (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1716breq2d 5082 . . . . . 6 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1817ralbidv 3120 . . . . 5 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1918rspcev 3552 . . . 4 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
2011, 15, 19syl2anc 583 . . 3 (𝑇𝐵 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
216, 20jca 511 . 2 (𝑇𝐵 → (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
22 simp1 1134 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐿)
237, 8, 3lnof 29018 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
241, 2, 23mp3an12 1449 . . . . . 6 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
257, 8, 9nmoxr 29029 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
261, 2, 25mp3an12 1449 . . . . . . . 8 (𝑇:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
27263ad2ant1 1131 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
28 recn 10892 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928abscld 15076 . . . . . . . . 9 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
3029rexrd 10956 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ*)
31303ad2ant2 1132 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) ∈ ℝ*)
32 pnfxr 10960 . . . . . . . 8 +∞ ∈ ℝ*
3332a1i 11 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → +∞ ∈ ℝ*)
347, 8, 12, 13, 9, 1, 2nmoub3i 29036 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ≤ (abs‘𝑥))
35 ltpnf 12785 . . . . . . . . 9 ((abs‘𝑥) ∈ ℝ → (abs‘𝑥) < +∞)
3629, 35syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) < +∞)
37363ad2ant2 1132 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) < +∞)
3827, 31, 33, 34, 37xrlelttrd 12823 . . . . . 6 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
3924, 38syl3an1 1161 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
409, 3, 4isblo 29045 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
411, 2, 40mp2an 688 . . . . 5 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞))
4222, 39, 41sylanbrc 582 . . . 4 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4342rexlimdv3a 3214 . . 3 (𝑇𝐿 → (∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) → 𝑇𝐵))
4443imp 406 . 2 ((𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4521, 44impbii 208 1 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  abscabs 14873  NrmCVeccnv 28847  BaseSetcba 28849  normCVcnmcv 28853   LnOp clno 29003   normOpOLD cnmoo 29004   BLnOp cblo 29005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-lno 29007  df-nmoo 29008  df-blo 29009  df-0o 29010
This theorem is referenced by:  blo3i  29065  blocnilem  29067
  Copyright terms: Public domain W3C validator