MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloln Structured version   Visualization version   GIF version

Theorem bloln 28719
Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloln.4 𝐿 = (𝑈 LnOp 𝑊)
bloln.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
bloln ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)

Proof of Theorem bloln
StepHypRef Expression
1 eqid 2738 . . . 4 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
2 bloln.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
3 bloln.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
41, 2, 3isblo 28717 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
54simprbda 502 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐵) → 𝑇𝐿)
653impa 1111 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114   class class class wbr 5030  cfv 6339  (class class class)co 7170  +∞cpnf 10750   < clt 10753  NrmCVeccnv 28519   LnOp clno 28675   normOpOLD cnmoo 28676   BLnOp cblo 28677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6297  df-fun 6341  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-blo 28681
This theorem is referenced by:  blof  28720  nmblolbii  28734  isblo3i  28736  blometi  28738  blocn2  28743  ubthlem2  28806
  Copyright terms: Public domain W3C validator