MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloln Structured version   Visualization version   GIF version

Theorem bloln 29191
Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloln.4 𝐿 = (𝑈 LnOp 𝑊)
bloln.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
bloln ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)

Proof of Theorem bloln
StepHypRef Expression
1 eqid 2736 . . . 4 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
2 bloln.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
3 bloln.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
41, 2, 3isblo 29189 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
54simprbda 500 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐵) → 𝑇𝐿)
653impa 1110 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104   class class class wbr 5081  cfv 6458  (class class class)co 7307  +∞cpnf 11052   < clt 11055  NrmCVeccnv 28991   LnOp clno 29147   normOpOLD cnmoo 29148   BLnOp cblo 29149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-blo 29153
This theorem is referenced by:  blof  29192  nmblolbii  29206  isblo3i  29208  blometi  29210  blocn2  29215  ubthlem2  29278
  Copyright terms: Public domain W3C validator