Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bloln | Structured version Visualization version GIF version |
Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bloln.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
bloln.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
Ref | Expression |
---|---|
bloln | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊) | |
2 | bloln.4 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
3 | bloln.5 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
4 | 1, 2, 3 | isblo 28717 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞))) |
5 | 4 | simprbda 502 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ 𝐿) |
6 | 5 | 3impa 1111 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ‘cfv 6339 (class class class)co 7170 +∞cpnf 10750 < clt 10753 NrmCVeccnv 28519 LnOp clno 28675 normOpOLD cnmoo 28676 BLnOp cblo 28677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-blo 28681 |
This theorem is referenced by: blof 28720 nmblolbii 28734 isblo3i 28736 blometi 28738 blocn2 28743 ubthlem2 28806 |
Copyright terms: Public domain | W3C validator |