MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloln Structured version   Visualization version   GIF version

Theorem bloln 30750
Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloln.4 𝐿 = (𝑈 LnOp 𝑊)
bloln.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
bloln ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)

Proof of Theorem bloln
StepHypRef Expression
1 eqid 2734 . . . 4 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
2 bloln.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
3 bloln.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
41, 2, 3isblo 30748 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
54simprbda 498 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐵) → 𝑇𝐿)
653impa 1109 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5125  cfv 6542  (class class class)co 7414  +∞cpnf 11275   < clt 11278  NrmCVeccnv 30550   LnOp clno 30706   normOpOLD cnmoo 30707   BLnOp cblo 30708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-blo 30712
This theorem is referenced by:  blof  30751  nmblolbii  30765  isblo3i  30767  blometi  30769  blocn2  30774  ubthlem2  30837
  Copyright terms: Public domain W3C validator