MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bloln Structured version   Visualization version   GIF version

Theorem bloln 30032
Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloln.4 𝐿 = (𝑈 LnOp 𝑊)
bloln.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
bloln ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)

Proof of Theorem bloln
StepHypRef Expression
1 eqid 2732 . . . 4 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
2 bloln.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
3 bloln.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
41, 2, 3isblo 30030 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
54simprbda 499 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐵) → 𝑇𝐿)
653impa 1110 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5148  cfv 6543  (class class class)co 7408  +∞cpnf 11244   < clt 11247  NrmCVeccnv 29832   LnOp clno 29988   normOpOLD cnmoo 29989   BLnOp cblo 29990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-blo 29994
This theorem is referenced by:  blof  30033  nmblolbii  30047  isblo3i  30049  blometi  30051  blocn2  30056  ubthlem2  30119
  Copyright terms: Public domain W3C validator