![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmblore | Structured version Visualization version GIF version |
Description: The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmblore.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmblore.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmblore.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmblore.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
Ref | Expression |
---|---|
nmblore | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmblore.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nmblore.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | nmblore.5 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
4 | 1, 2, 3 | blof 30814 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) |
5 | nmblore.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
6 | 1, 2, 5 | nmogtmnf 30799 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) |
7 | 4, 6 | syld3an3 1408 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → -∞ < (𝑁‘𝑇)) |
8 | eqid 2735 | . . . . 5 ⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) | |
9 | 5, 8, 3 | isblo 30811 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑁‘𝑇) < +∞))) |
10 | 9 | simplbda 499 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) < +∞) |
11 | 10 | 3impa 1109 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) < +∞) |
12 | 1, 2, 5 | nmoxr 30795 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
13 | 4, 12 | syld3an3 1408 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) ∈ ℝ*) |
14 | xrrebnd 13207 | . . 3 ⊢ ((𝑁‘𝑇) ∈ ℝ* → ((𝑁‘𝑇) ∈ ℝ ↔ (-∞ < (𝑁‘𝑇) ∧ (𝑁‘𝑇) < +∞))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → ((𝑁‘𝑇) ∈ ℝ ↔ (-∞ < (𝑁‘𝑇) ∧ (𝑁‘𝑇) < +∞))) |
16 | 7, 11, 15 | mpbir2and 713 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 NrmCVeccnv 30613 BaseSetcba 30615 LnOp clno 30769 normOpOLD cnmoo 30770 BLnOp cblo 30771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-grpo 30522 df-gid 30523 df-ginv 30524 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-nmcv 30629 df-lno 30773 df-nmoo 30774 df-blo 30775 |
This theorem is referenced by: nmblolbii 30828 isblo3i 30830 blocni 30834 htthlem 30946 |
Copyright terms: Public domain | W3C validator |