![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmblore | Structured version Visualization version GIF version |
Description: The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmblore.1 | β’ π = (BaseSetβπ) |
nmblore.2 | β’ π = (BaseSetβπ) |
nmblore.3 | β’ π = (π normOpOLD π) |
nmblore.5 | β’ π΅ = (π BLnOp π) |
Ref | Expression |
---|---|
nmblore | β’ ((π β NrmCVec β§ π β NrmCVec β§ π β π΅) β (πβπ) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmblore.1 | . . . 4 β’ π = (BaseSetβπ) | |
2 | nmblore.2 | . . . 4 β’ π = (BaseSetβπ) | |
3 | nmblore.5 | . . . 4 β’ π΅ = (π BLnOp π) | |
4 | 1, 2, 3 | blof 30293 | . . 3 β’ ((π β NrmCVec β§ π β NrmCVec β§ π β π΅) β π:πβΆπ) |
5 | nmblore.3 | . . . 4 β’ π = (π normOpOLD π) | |
6 | 1, 2, 5 | nmogtmnf 30278 | . . 3 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β -β < (πβπ)) |
7 | 4, 6 | syld3an3 1409 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec β§ π β π΅) β -β < (πβπ)) |
8 | eqid 2732 | . . . . 5 β’ (π LnOp π) = (π LnOp π) | |
9 | 5, 8, 3 | isblo 30290 | . . . 4 β’ ((π β NrmCVec β§ π β NrmCVec) β (π β π΅ β (π β (π LnOp π) β§ (πβπ) < +β))) |
10 | 9 | simplbda 500 | . . 3 β’ (((π β NrmCVec β§ π β NrmCVec) β§ π β π΅) β (πβπ) < +β) |
11 | 10 | 3impa 1110 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec β§ π β π΅) β (πβπ) < +β) |
12 | 1, 2, 5 | nmoxr 30274 | . . . 4 β’ ((π β NrmCVec β§ π β NrmCVec β§ π:πβΆπ) β (πβπ) β β*) |
13 | 4, 12 | syld3an3 1409 | . . 3 β’ ((π β NrmCVec β§ π β NrmCVec β§ π β π΅) β (πβπ) β β*) |
14 | xrrebnd 13151 | . . 3 β’ ((πβπ) β β* β ((πβπ) β β β (-β < (πβπ) β§ (πβπ) < +β))) | |
15 | 13, 14 | syl 17 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec β§ π β π΅) β ((πβπ) β β β (-β < (πβπ) β§ (πβπ) < +β))) |
16 | 7, 11, 15 | mpbir2and 711 | 1 β’ ((π β NrmCVec β§ π β NrmCVec β§ π β π΅) β (πβπ) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7411 βcr 11111 +βcpnf 11249 -βcmnf 11250 β*cxr 11251 < clt 11252 NrmCVeccnv 30092 BaseSetcba 30094 LnOp clno 30248 normOpOLD cnmoo 30249 BLnOp cblo 30250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-grpo 30001 df-gid 30002 df-ginv 30003 df-ablo 30053 df-vc 30067 df-nv 30100 df-va 30103 df-ba 30104 df-sm 30105 df-0v 30106 df-nmcv 30108 df-lno 30252 df-nmoo 30253 df-blo 30254 |
This theorem is referenced by: nmblolbii 30307 isblo3i 30309 blocni 30313 htthlem 30425 |
Copyright terms: Public domain | W3C validator |