MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmblore Structured version   Visualization version   GIF version

Theorem nmblore 28563
Description: The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmblore.1 𝑋 = (BaseSet‘𝑈)
nmblore.2 𝑌 = (BaseSet‘𝑊)
nmblore.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmblore.5 𝐵 = (𝑈 BLnOp 𝑊)
Assertion
Ref Expression
nmblore ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) ∈ ℝ)

Proof of Theorem nmblore
StepHypRef Expression
1 nmblore.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmblore.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmblore.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
41, 2, 3blof 28562 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋𝑌)
5 nmblore.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
61, 2, 5nmogtmnf 28547 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → -∞ < (𝑁𝑇))
74, 6syld3an3 1405 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → -∞ < (𝑁𝑇))
8 eqid 2821 . . . . 5 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
95, 8, 3isblo 28559 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑁𝑇) < +∞)))
109simplbda 502 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑇𝐵) → (𝑁𝑇) < +∞)
11103impa 1106 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) < +∞)
121, 2, 5nmoxr 28543 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) ∈ ℝ*)
134, 12syld3an3 1405 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) ∈ ℝ*)
14 xrrebnd 12562 . . 3 ((𝑁𝑇) ∈ ℝ* → ((𝑁𝑇) ∈ ℝ ↔ (-∞ < (𝑁𝑇) ∧ (𝑁𝑇) < +∞)))
1513, 14syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑁𝑇) ∈ ℝ ↔ (-∞ < (𝑁𝑇) ∧ (𝑁𝑇) < +∞)))
167, 11, 15mpbir2and 711 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → (𝑁𝑇) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  NrmCVeccnv 28361  BaseSetcba 28363   LnOp clno 28517   normOpOLD cnmoo 28518   BLnOp cblo 28519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-grpo 28270  df-gid 28271  df-ginv 28272  df-ablo 28322  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-nmcv 28377  df-lno 28521  df-nmoo 28522  df-blo 28523
This theorem is referenced by:  nmblolbii  28576  isblo3i  28578  blocni  28582  htthlem  28694
  Copyright terms: Public domain W3C validator