![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islmhm3 | Structured version Visualization version GIF version |
Description: Property of a module homomorphism, similar to ismhm 18811. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
islmhm.k | ⊢ 𝐾 = (Scalar‘𝑆) |
islmhm.l | ⊢ 𝐿 = (Scalar‘𝑇) |
islmhm.b | ⊢ 𝐵 = (Base‘𝐾) |
islmhm.e | ⊢ 𝐸 = (Base‘𝑆) |
islmhm.m | ⊢ · = ( ·𝑠 ‘𝑆) |
islmhm.n | ⊢ × = ( ·𝑠 ‘𝑇) |
Ref | Expression |
---|---|
islmhm3 | ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhm.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | islmhm.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | islmhm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
4 | islmhm.e | . . 3 ⊢ 𝐸 = (Base‘𝑆) | |
5 | islmhm.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
6 | islmhm.n | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 21044 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
8 | 7 | baib 535 | 1 ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 GrpHom cghm 19243 LModclmod 20875 LMHom clmhm 21036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-lmhm 21039 |
This theorem is referenced by: islmhm2 21055 pj1lmhm 21117 |
Copyright terms: Public domain | W3C validator |