![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islmhm3 | Structured version Visualization version GIF version |
Description: Property of a module homomorphism, similar to ismhm 18770. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
islmhm.k | ⊢ 𝐾 = (Scalar‘𝑆) |
islmhm.l | ⊢ 𝐿 = (Scalar‘𝑇) |
islmhm.b | ⊢ 𝐵 = (Base‘𝐾) |
islmhm.e | ⊢ 𝐸 = (Base‘𝑆) |
islmhm.m | ⊢ · = ( ·𝑠 ‘𝑆) |
islmhm.n | ⊢ × = ( ·𝑠 ‘𝑇) |
Ref | Expression |
---|---|
islmhm3 | ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhm.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | islmhm.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | islmhm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
4 | islmhm.e | . . 3 ⊢ 𝐸 = (Base‘𝑆) | |
5 | islmhm.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
6 | islmhm.n | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 21001 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
8 | 7 | baib 534 | 1 ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 Scalarcsca 17264 ·𝑠 cvsca 17265 GrpHom cghm 19202 LModclmod 20832 LMHom clmhm 20993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-lmhm 20996 |
This theorem is referenced by: islmhm2 21012 pj1lmhm 21074 |
Copyright terms: Public domain | W3C validator |