| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islmhm3 | Structured version Visualization version GIF version | ||
| Description: Property of a module homomorphism, similar to ismhm 18799. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| islmhm.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| islmhm.l | ⊢ 𝐿 = (Scalar‘𝑇) |
| islmhm.b | ⊢ 𝐵 = (Base‘𝐾) |
| islmhm.e | ⊢ 𝐸 = (Base‘𝑆) |
| islmhm.m | ⊢ · = ( ·𝑠 ‘𝑆) |
| islmhm.n | ⊢ × = ( ·𝑠 ‘𝑇) |
| Ref | Expression |
|---|---|
| islmhm3 | ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhm.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 2 | islmhm.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
| 3 | islmhm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | islmhm.e | . . 3 ⊢ 𝐸 = (Base‘𝑆) | |
| 5 | islmhm.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 6 | islmhm.n | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | islmhm 21027 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 8 | 7 | baib 535 | 1 ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Scalarcsca 17301 ·𝑠 cvsca 17302 GrpHom cghm 19231 LModclmod 20859 LMHom clmhm 21019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-lmhm 21022 |
| This theorem is referenced by: islmhm2 21038 pj1lmhm 21100 |
| Copyright terms: Public domain | W3C validator |