Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islmhm3 | Structured version Visualization version GIF version |
Description: Property of a module homomorphism, similar to ismhm 18529. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
islmhm.k | ⊢ 𝐾 = (Scalar‘𝑆) |
islmhm.l | ⊢ 𝐿 = (Scalar‘𝑇) |
islmhm.b | ⊢ 𝐵 = (Base‘𝐾) |
islmhm.e | ⊢ 𝐸 = (Base‘𝑆) |
islmhm.m | ⊢ · = ( ·𝑠 ‘𝑆) |
islmhm.n | ⊢ × = ( ·𝑠 ‘𝑇) |
Ref | Expression |
---|---|
islmhm3 | ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhm.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | islmhm.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | islmhm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
4 | islmhm.e | . . 3 ⊢ 𝐸 = (Base‘𝑆) | |
5 | islmhm.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
6 | islmhm.n | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 20395 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
8 | 7 | baib 536 | 1 ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 Scalarcsca 17062 ·𝑠 cvsca 17063 GrpHom cghm 18927 LModclmod 20229 LMHom clmhm 20387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-lmhm 20390 |
This theorem is referenced by: islmhm2 20406 pj1lmhm 20468 |
Copyright terms: Public domain | W3C validator |