MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm3 Structured version   Visualization version   GIF version

Theorem islmhm3 20873
Description: Property of a module homomorphism, similar to ismhm 18712. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
islmhm.k 𝐾 = (Scalarβ€˜π‘†)
islmhm.l 𝐿 = (Scalarβ€˜π‘‡)
islmhm.b 𝐡 = (Baseβ€˜πΎ)
islmhm.e 𝐸 = (Baseβ€˜π‘†)
islmhm.m Β· = ( ·𝑠 β€˜π‘†)
islmhm.n Γ— = ( ·𝑠 β€˜π‘‡)
Assertion
Ref Expression
islmhm3 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) β†’ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
Distinct variable groups:   π‘₯,𝐡   𝑦,𝐸   π‘₯,𝑦,𝑆   π‘₯,𝐹,𝑦   π‘₯,𝑇,𝑦
Allowed substitution hints:   𝐡(𝑦)   Β· (π‘₯,𝑦)   Γ— (π‘₯,𝑦)   𝐸(π‘₯)   𝐾(π‘₯,𝑦)   𝐿(π‘₯,𝑦)

Proof of Theorem islmhm3
StepHypRef Expression
1 islmhm.k . . 3 𝐾 = (Scalarβ€˜π‘†)
2 islmhm.l . . 3 𝐿 = (Scalarβ€˜π‘‡)
3 islmhm.b . . 3 𝐡 = (Baseβ€˜πΎ)
4 islmhm.e . . 3 𝐸 = (Baseβ€˜π‘†)
5 islmhm.m . . 3 Β· = ( ·𝑠 β€˜π‘†)
6 islmhm.n . . 3 Γ— = ( ·𝑠 β€˜π‘‡)
71, 2, 3, 4, 5, 6islmhm 20872 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
87baib 535 1 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) β†’ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  β€˜cfv 6536  (class class class)co 7404  Basecbs 17150  Scalarcsca 17206   ·𝑠 cvsca 17207   GrpHom cghm 19135  LModclmod 20703   LMHom clmhm 20864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-lmhm 20867
This theorem is referenced by:  islmhm2  20883  pj1lmhm  20945
  Copyright terms: Public domain W3C validator