Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islmhm3 | Structured version Visualization version GIF version |
Description: Property of a module homomorphism, similar to ismhm 18347. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
islmhm.k | ⊢ 𝐾 = (Scalar‘𝑆) |
islmhm.l | ⊢ 𝐿 = (Scalar‘𝑇) |
islmhm.b | ⊢ 𝐵 = (Base‘𝐾) |
islmhm.e | ⊢ 𝐸 = (Base‘𝑆) |
islmhm.m | ⊢ · = ( ·𝑠 ‘𝑆) |
islmhm.n | ⊢ × = ( ·𝑠 ‘𝑇) |
Ref | Expression |
---|---|
islmhm3 | ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhm.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | islmhm.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | islmhm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
4 | islmhm.e | . . 3 ⊢ 𝐸 = (Base‘𝑆) | |
5 | islmhm.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
6 | islmhm.n | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 20204 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
8 | 7 | baib 535 | 1 ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 GrpHom cghm 18746 LModclmod 20038 LMHom clmhm 20196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-lmhm 20199 |
This theorem is referenced by: islmhm2 20215 pj1lmhm 20277 |
Copyright terms: Public domain | W3C validator |