![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islmhm3 | Structured version Visualization version GIF version |
Description: Property of a module homomorphism, similar to ismhm 18712. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
islmhm.k | β’ πΎ = (Scalarβπ) |
islmhm.l | β’ πΏ = (Scalarβπ) |
islmhm.b | β’ π΅ = (BaseβπΎ) |
islmhm.e | β’ πΈ = (Baseβπ) |
islmhm.m | β’ Β· = ( Β·π βπ) |
islmhm.n | β’ Γ = ( Β·π βπ) |
Ref | Expression |
---|---|
islmhm3 | β’ ((π β LMod β§ π β LMod) β (πΉ β (π LMHom π) β (πΉ β (π GrpHom π) β§ πΏ = πΎ β§ βπ₯ β π΅ βπ¦ β πΈ (πΉβ(π₯ Β· π¦)) = (π₯ Γ (πΉβπ¦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhm.k | . . 3 β’ πΎ = (Scalarβπ) | |
2 | islmhm.l | . . 3 β’ πΏ = (Scalarβπ) | |
3 | islmhm.b | . . 3 β’ π΅ = (BaseβπΎ) | |
4 | islmhm.e | . . 3 β’ πΈ = (Baseβπ) | |
5 | islmhm.m | . . 3 β’ Β· = ( Β·π βπ) | |
6 | islmhm.n | . . 3 β’ Γ = ( Β·π βπ) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 20872 | . 2 β’ (πΉ β (π LMHom π) β ((π β LMod β§ π β LMod) β§ (πΉ β (π GrpHom π) β§ πΏ = πΎ β§ βπ₯ β π΅ βπ¦ β πΈ (πΉβ(π₯ Β· π¦)) = (π₯ Γ (πΉβπ¦))))) |
8 | 7 | baib 535 | 1 β’ ((π β LMod β§ π β LMod) β (πΉ β (π LMHom π) β (πΉ β (π GrpHom π) β§ πΏ = πΎ β§ βπ₯ β π΅ βπ¦ β πΈ (πΉβ(π₯ Β· π¦)) = (π₯ Γ (πΉβπ¦))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3055 βcfv 6536 (class class class)co 7404 Basecbs 17150 Scalarcsca 17206 Β·π cvsca 17207 GrpHom cghm 19135 LModclmod 20703 LMHom clmhm 20864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-lmhm 20867 |
This theorem is referenced by: islmhm2 20883 pj1lmhm 20945 |
Copyright terms: Public domain | W3C validator |