| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islmhm3 | Structured version Visualization version GIF version | ||
| Description: Property of a module homomorphism, similar to ismhm 18688. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| islmhm.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| islmhm.l | ⊢ 𝐿 = (Scalar‘𝑇) |
| islmhm.b | ⊢ 𝐵 = (Base‘𝐾) |
| islmhm.e | ⊢ 𝐸 = (Base‘𝑆) |
| islmhm.m | ⊢ · = ( ·𝑠 ‘𝑆) |
| islmhm.n | ⊢ × = ( ·𝑠 ‘𝑇) |
| Ref | Expression |
|---|---|
| islmhm3 | ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhm.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 2 | islmhm.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
| 3 | islmhm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | islmhm.e | . . 3 ⊢ 𝐸 = (Base‘𝑆) | |
| 5 | islmhm.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 6 | islmhm.n | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | islmhm 20956 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 8 | 7 | baib 535 | 1 ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 GrpHom cghm 19119 LModclmod 20788 LMHom clmhm 20948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-lmhm 20951 |
| This theorem is referenced by: islmhm2 20967 pj1lmhm 21029 |
| Copyright terms: Public domain | W3C validator |