| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islmhm3 | Structured version Visualization version GIF version | ||
| Description: Property of a module homomorphism, similar to ismhm 18718. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| islmhm.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| islmhm.l | ⊢ 𝐿 = (Scalar‘𝑇) |
| islmhm.b | ⊢ 𝐵 = (Base‘𝐾) |
| islmhm.e | ⊢ 𝐸 = (Base‘𝑆) |
| islmhm.m | ⊢ · = ( ·𝑠 ‘𝑆) |
| islmhm.n | ⊢ × = ( ·𝑠 ‘𝑇) |
| Ref | Expression |
|---|---|
| islmhm3 | ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhm.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 2 | islmhm.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
| 3 | islmhm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | islmhm.e | . . 3 ⊢ 𝐸 = (Base‘𝑆) | |
| 5 | islmhm.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 6 | islmhm.n | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | islmhm 20940 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 8 | 7 | baib 535 | 1 ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Scalarcsca 17229 ·𝑠 cvsca 17230 GrpHom cghm 19150 LModclmod 20772 LMHom clmhm 20932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-lmhm 20935 |
| This theorem is referenced by: islmhm2 20951 pj1lmhm 21013 |
| Copyright terms: Public domain | W3C validator |