Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . 3
⊢
(+g‘𝑊) = (+g‘𝑊) |
2 | | pj1lmhm.s |
. . 3
⊢ ⊕ =
(LSSum‘𝑊) |
3 | | pj1lmhm.z |
. . 3
⊢ 0 =
(0g‘𝑊) |
4 | | eqid 2740 |
. . 3
⊢
(Cntz‘𝑊) =
(Cntz‘𝑊) |
5 | | pj1lmhm.1 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | | pj1lmhm.l |
. . . . . 6
⊢ 𝐿 = (LSubSp‘𝑊) |
7 | 6 | lsssssubg 20218 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊)) |
8 | 5, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐿 ⊆ (SubGrp‘𝑊)) |
9 | | pj1lmhm.2 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ 𝐿) |
10 | 8, 9 | sseldd 3927 |
. . 3
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
11 | | pj1lmhm.3 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝐿) |
12 | 8, 11 | sseldd 3927 |
. . 3
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
13 | | pj1lmhm.4 |
. . 3
⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
14 | | lmodabl 20168 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
15 | 5, 14 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ Abel) |
16 | 4, 15, 10, 12 | ablcntzd 19456 |
. . 3
⊢ (𝜑 → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈)) |
17 | | pj1lmhm.p |
. . 3
⊢ 𝑃 = (proj1‘𝑊) |
18 | 1, 2, 3, 4, 10, 12, 13, 16, 17 | pj1ghm 19307 |
. 2
⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) GrpHom 𝑊)) |
19 | | eqid 2740 |
. . 3
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
20 | 19 | a1i 11 |
. 2
⊢ (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑊)) |
21 | 1, 2, 3, 4, 10, 12, 13, 16, 17 | pj1id 19303 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g‘𝑊)((𝑈𝑃𝑇)‘𝑦))) |
22 | 21 | adantrl 713 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g‘𝑊)((𝑈𝑃𝑇)‘𝑦))) |
23 | 22 | oveq2d 7287 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥( ·𝑠
‘𝑊)𝑦) = (𝑥( ·𝑠
‘𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g‘𝑊)((𝑈𝑃𝑇)‘𝑦)))) |
24 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑊 ∈ LMod) |
25 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑥 ∈ (Base‘(Scalar‘𝑊))) |
26 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑇 ∈ 𝐿) |
27 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(Base‘𝑊) =
(Base‘𝑊) |
28 | 27, 6 | lssss 20196 |
. . . . . . . . . 10
⊢ (𝑇 ∈ 𝐿 → 𝑇 ⊆ (Base‘𝑊)) |
29 | 26, 28 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑇 ⊆ (Base‘𝑊)) |
30 | 10 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑇 ∈ (SubGrp‘𝑊)) |
31 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑈 ∈ (SubGrp‘𝑊)) |
32 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑇 ∩ 𝑈) = { 0 }) |
33 | 16 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈)) |
34 | 1, 2, 3, 4, 30, 31, 32, 33, 17 | pj1f 19301 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
35 | | simprr 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑦 ∈ (𝑇 ⊕ 𝑈)) |
36 | 34, 35 | ffvelrnd 6959 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇) |
37 | 29, 36 | sseldd 3927 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊)) |
38 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑈 ∈ 𝐿) |
39 | 27, 6 | lssss 20196 |
. . . . . . . . . 10
⊢ (𝑈 ∈ 𝐿 → 𝑈 ⊆ (Base‘𝑊)) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑈 ⊆ (Base‘𝑊)) |
41 | 1, 2, 3, 4, 30, 31, 32, 33, 17 | pj2f 19302 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
42 | 41, 35 | ffvelrnd 6959 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈) |
43 | 40, 42 | sseldd 3927 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊)) |
44 | | eqid 2740 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
45 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
46 | 27, 1, 19, 44, 45 | lmodvsdi 20144 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g‘𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))(+g‘𝑊)(𝑥( ·𝑠
‘𝑊)((𝑈𝑃𝑇)‘𝑦)))) |
47 | 24, 25, 37, 43, 46 | syl13anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥( ·𝑠
‘𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g‘𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))(+g‘𝑊)(𝑥( ·𝑠
‘𝑊)((𝑈𝑃𝑇)‘𝑦)))) |
48 | 23, 47 | eqtrd 2780 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥( ·𝑠
‘𝑊)𝑦) = ((𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))(+g‘𝑊)(𝑥( ·𝑠
‘𝑊)((𝑈𝑃𝑇)‘𝑦)))) |
49 | 6, 2 | lsmcl 20343 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ 𝑈 ∈ 𝐿) → (𝑇 ⊕ 𝑈) ∈ 𝐿) |
50 | 5, 9, 11, 49 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ⊕ 𝑈) ∈ 𝐿) |
51 | 50 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑇 ⊕ 𝑈) ∈ 𝐿) |
52 | 19, 44, 45, 6 | lssvscl 20215 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ (𝑇 ⊕ 𝑈) ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (𝑇 ⊕ 𝑈)) |
53 | 24, 51, 25, 35, 52 | syl22anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (𝑇 ⊕ 𝑈)) |
54 | 19, 44, 45, 6 | lssvscl 20215 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)) → (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇) |
55 | 24, 26, 25, 36, 54 | syl22anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇) |
56 | 19, 44, 45, 6 | lssvscl 20215 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)) → (𝑥( ·𝑠
‘𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈) |
57 | 24, 38, 25, 42, 56 | syl22anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥( ·𝑠
‘𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈) |
58 | 1, 2, 3, 4, 30, 31, 32, 33, 17, 53, 55, 57 | pj1eq 19304 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑥( ·𝑠
‘𝑊)𝑦) = ((𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))(+g‘𝑊)(𝑥( ·𝑠
‘𝑊)((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑈𝑃𝑇)‘𝑦))))) |
59 | 48, 58 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑈𝑃𝑇)‘𝑦)))) |
60 | 59 | simpld 495 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))) |
61 | 60 | ralrimivva 3117 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 ⊕ 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))) |
62 | 8, 50 | sseldd 3927 |
. . . . . 6
⊢ (𝜑 → (𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝑊)) |
63 | | eqid 2740 |
. . . . . . 7
⊢ (𝑊 ↾s (𝑇 ⊕ 𝑈)) = (𝑊 ↾s (𝑇 ⊕ 𝑈)) |
64 | 63 | subgbas 18757 |
. . . . . 6
⊢ ((𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝑊) → (𝑇 ⊕ 𝑈) = (Base‘(𝑊 ↾s (𝑇 ⊕ 𝑈)))) |
65 | 62, 64 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑇 ⊕ 𝑈) = (Base‘(𝑊 ↾s (𝑇 ⊕ 𝑈)))) |
66 | 65 | raleqdv 3347 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ (𝑇 ⊕ 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘(𝑊 ↾s (𝑇 ⊕ 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦)))) |
67 | 66 | ralbidv 3123 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈
(Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 ⊕ 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊 ↾s (𝑇 ⊕ 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦)))) |
68 | 61, 67 | mpbid 231 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊 ↾s (𝑇 ⊕ 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))) |
69 | 63, 6 | lsslmod 20220 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑇 ⊕ 𝑈) ∈ 𝐿) → (𝑊 ↾s (𝑇 ⊕ 𝑈)) ∈ LMod) |
70 | 5, 50, 69 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑊 ↾s (𝑇 ⊕ 𝑈)) ∈ LMod) |
71 | | ovex 7304 |
. . . . 5
⊢ (𝑇 ⊕ 𝑈) ∈ V |
72 | 63, 19 | resssca 17051 |
. . . . 5
⊢ ((𝑇 ⊕ 𝑈) ∈ V → (Scalar‘𝑊) = (Scalar‘(𝑊 ↾s (𝑇 ⊕ 𝑈)))) |
73 | 71, 72 | ax-mp 5 |
. . . 4
⊢
(Scalar‘𝑊) =
(Scalar‘(𝑊
↾s (𝑇
⊕
𝑈))) |
74 | | eqid 2740 |
. . . 4
⊢
(Base‘(𝑊
↾s (𝑇
⊕
𝑈))) = (Base‘(𝑊 ↾s (𝑇 ⊕ 𝑈))) |
75 | 63, 44 | ressvsca 17052 |
. . . . 5
⊢ ((𝑇 ⊕ 𝑈) ∈ V → (
·𝑠 ‘𝑊) = ( ·𝑠
‘(𝑊
↾s (𝑇
⊕
𝑈)))) |
76 | 71, 75 | ax-mp 5 |
. . . 4
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘(𝑊
↾s (𝑇
⊕
𝑈))) |
77 | 73, 19, 45, 74, 76, 44 | islmhm3 20288 |
. . 3
⊢ (((𝑊 ↾s (𝑇 ⊕ 𝑈)) ∈ LMod ∧ 𝑊 ∈ LMod) → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊 ↾s (𝑇 ⊕ 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))))) |
78 | 70, 5, 77 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊 ↾s (𝑇 ⊕ 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠
‘𝑊)𝑦)) = (𝑥( ·𝑠
‘𝑊)((𝑇𝑃𝑈)‘𝑦))))) |
79 | 18, 20, 68, 78 | mpbir3and 1341 |
1
⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊)) |