MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lmhm Structured version   Visualization version   GIF version

Theorem pj1lmhm 19588
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1lmhm.l 𝐿 = (LSubSp‘𝑊)
pj1lmhm.s = (LSSum‘𝑊)
pj1lmhm.z 0 = (0g𝑊)
pj1lmhm.p 𝑃 = (proj1𝑊)
pj1lmhm.1 (𝜑𝑊 ∈ LMod)
pj1lmhm.2 (𝜑𝑇𝐿)
pj1lmhm.3 (𝜑𝑈𝐿)
pj1lmhm.4 (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
pj1lmhm (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))

Proof of Theorem pj1lmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2772 . . 3 (+g𝑊) = (+g𝑊)
2 pj1lmhm.s . . 3 = (LSSum‘𝑊)
3 pj1lmhm.z . . 3 0 = (0g𝑊)
4 eqid 2772 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 pj1lmhm.1 . . . . 5 (𝜑𝑊 ∈ LMod)
6 pj1lmhm.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
76lsssssubg 19446 . . . . 5 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . 4 (𝜑𝐿 ⊆ (SubGrp‘𝑊))
9 pj1lmhm.2 . . . 4 (𝜑𝑇𝐿)
108, 9sseldd 3853 . . 3 (𝜑𝑇 ∈ (SubGrp‘𝑊))
11 pj1lmhm.3 . . . 4 (𝜑𝑈𝐿)
128, 11sseldd 3853 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
13 pj1lmhm.4 . . 3 (𝜑 → (𝑇𝑈) = { 0 })
14 lmodabl 19397 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
155, 14syl 17 . . . 4 (𝜑𝑊 ∈ Abel)
164, 15, 10, 12ablcntzd 18727 . . 3 (𝜑𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
17 pj1lmhm.p . . 3 𝑃 = (proj1𝑊)
181, 2, 3, 4, 10, 12, 13, 16, 17pj1ghm 18581 . 2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊))
19 eqid 2772 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2019a1i 11 . 2 (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑊))
211, 2, 3, 4, 10, 12, 13, 16, 17pj1id 18577 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑇 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦)))
2221adantrl 703 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦)))
2322oveq2d 6986 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))))
245adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑊 ∈ LMod)
25 simprl 758 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
269adantr 473 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇𝐿)
27 eqid 2772 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2827, 6lssss 19424 . . . . . . . . . 10 (𝑇𝐿𝑇 ⊆ (Base‘𝑊))
2926, 28syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (Base‘𝑊))
3010adantr 473 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ∈ (SubGrp‘𝑊))
3112adantr 473 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ∈ (SubGrp‘𝑊))
3213adantr 473 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑈) = { 0 })
3316adantr 473 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
341, 2, 3, 4, 30, 31, 32, 33, 17pj1f 18575 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
35 simprr 760 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 ∈ (𝑇 𝑈))
3634, 35ffvelrnd 6671 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
3729, 36sseldd 3853 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊))
3811adantr 473 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈𝐿)
3927, 6lssss 19424 . . . . . . . . . 10 (𝑈𝐿𝑈 ⊆ (Base‘𝑊))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ⊆ (Base‘𝑊))
411, 2, 3, 4, 30, 31, 32, 33, 17pj2f 18576 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
4241, 35ffvelrnd 6671 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
4340, 42sseldd 3853 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))
44 eqid 2772 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
45 eqid 2772 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4627, 1, 19, 44, 45lmodvsdi 19373 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
4724, 25, 37, 43, 46syl13anc 1352 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
4823, 47eqtrd 2808 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
496, 2lsmcl 19571 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑇𝐿𝑈𝐿) → (𝑇 𝑈) ∈ 𝐿)
505, 9, 11, 49syl3anc 1351 . . . . . . . . 9 (𝜑 → (𝑇 𝑈) ∈ 𝐿)
5150adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇 𝑈) ∈ 𝐿)
5219, 44, 45, 6lssvscl 19443 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (𝑇 𝑈))
5324, 51, 25, 35, 52syl22anc 826 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (𝑇 𝑈))
5419, 44, 45, 6lssvscl 19443 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑇𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)) → (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
5524, 26, 25, 36, 54syl22anc 826 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
5619, 44, 45, 6lssvscl 19443 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)) → (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
5724, 38, 25, 42, 56syl22anc 826 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
581, 2, 3, 4, 30, 31, 32, 33, 17, 53, 55, 57pj1eq 18578 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑥( ·𝑠𝑊)𝑦) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)))))
5948, 58mpbid 224 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
6059simpld 487 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
6160ralrimivva 3135 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
628, 50sseldd 3853 . . . . . 6 (𝜑 → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
63 eqid 2772 . . . . . . 7 (𝑊s (𝑇 𝑈)) = (𝑊s (𝑇 𝑈))
6463subgbas 18061 . . . . . 6 ((𝑇 𝑈) ∈ (SubGrp‘𝑊) → (𝑇 𝑈) = (Base‘(𝑊s (𝑇 𝑈))))
6562, 64syl 17 . . . . 5 (𝜑 → (𝑇 𝑈) = (Base‘(𝑊s (𝑇 𝑈))))
6665raleqdv 3349 . . . 4 (𝜑 → (∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))))
6766ralbidv 3141 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))))
6861, 67mpbid 224 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
6963, 6lsslmod 19448 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝐿) → (𝑊s (𝑇 𝑈)) ∈ LMod)
705, 50, 69syl2anc 576 . . 3 (𝜑 → (𝑊s (𝑇 𝑈)) ∈ LMod)
71 ovex 7002 . . . . 5 (𝑇 𝑈) ∈ V
7263, 19resssca 16500 . . . . 5 ((𝑇 𝑈) ∈ V → (Scalar‘𝑊) = (Scalar‘(𝑊s (𝑇 𝑈))))
7371, 72ax-mp 5 . . . 4 (Scalar‘𝑊) = (Scalar‘(𝑊s (𝑇 𝑈)))
74 eqid 2772 . . . 4 (Base‘(𝑊s (𝑇 𝑈))) = (Base‘(𝑊s (𝑇 𝑈)))
7563, 44ressvsca 16501 . . . . 5 ((𝑇 𝑈) ∈ V → ( ·𝑠𝑊) = ( ·𝑠 ‘(𝑊s (𝑇 𝑈))))
7671, 75ax-mp 5 . . . 4 ( ·𝑠𝑊) = ( ·𝑠 ‘(𝑊s (𝑇 𝑈)))
7773, 19, 45, 74, 76, 44islmhm3 19516 . . 3 (((𝑊s (𝑇 𝑈)) ∈ LMod ∧ 𝑊 ∈ LMod) → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))))
7870, 5, 77syl2anc 576 . 2 (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))))
7918, 20, 68, 78mpbir3and 1322 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3082  Vcvv 3409  cin 3822  wss 3823  {csn 4435  cfv 6182  (class class class)co 6970  Basecbs 16333  s cress 16334  +gcplusg 16415  Scalarcsca 16418   ·𝑠 cvsca 16419  0gc0g 16563  SubGrpcsubg 18051   GrpHom cghm 18120  Cntzccntz 18210  LSSumclsm 18514  proj1cpj1 18515  Abelcabl 18661  LModclmod 19350  LSubSpclss 19419   LMHom clmhm 19507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-sca 16431  df-vsca 16432  df-0g 16565  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-submnd 17798  df-grp 17888  df-minusg 17889  df-sbg 17890  df-subg 18054  df-ghm 18121  df-cntz 18212  df-lsm 18516  df-pj1 18517  df-cmn 18662  df-abl 18663  df-mgp 18957  df-ur 18969  df-ring 19016  df-lmod 19352  df-lss 19420  df-lmhm 19510
This theorem is referenced by:  pj1lmhm2  19589  pjff  20552
  Copyright terms: Public domain W3C validator