MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lmhm Structured version   Visualization version   GIF version

Theorem pj1lmhm 20944
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1lmhm.l 𝐿 = (LSubSp‘𝑊)
pj1lmhm.s = (LSSum‘𝑊)
pj1lmhm.z 0 = (0g𝑊)
pj1lmhm.p 𝑃 = (proj1𝑊)
pj1lmhm.1 (𝜑𝑊 ∈ LMod)
pj1lmhm.2 (𝜑𝑇𝐿)
pj1lmhm.3 (𝜑𝑈𝐿)
pj1lmhm.4 (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
pj1lmhm (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))

Proof of Theorem pj1lmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (+g𝑊) = (+g𝑊)
2 pj1lmhm.s . . 3 = (LSSum‘𝑊)
3 pj1lmhm.z . . 3 0 = (0g𝑊)
4 eqid 2731 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 pj1lmhm.1 . . . . 5 (𝜑𝑊 ∈ LMod)
6 pj1lmhm.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
76lsssssubg 20801 . . . . 5 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . 4 (𝜑𝐿 ⊆ (SubGrp‘𝑊))
9 pj1lmhm.2 . . . 4 (𝜑𝑇𝐿)
108, 9sseldd 3983 . . 3 (𝜑𝑇 ∈ (SubGrp‘𝑊))
11 pj1lmhm.3 . . . 4 (𝜑𝑈𝐿)
128, 11sseldd 3983 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
13 pj1lmhm.4 . . 3 (𝜑 → (𝑇𝑈) = { 0 })
14 lmodabl 20751 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
155, 14syl 17 . . . 4 (𝜑𝑊 ∈ Abel)
164, 15, 10, 12ablcntzd 19773 . . 3 (𝜑𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
17 pj1lmhm.p . . 3 𝑃 = (proj1𝑊)
181, 2, 3, 4, 10, 12, 13, 16, 17pj1ghm 19619 . 2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊))
19 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2019a1i 11 . 2 (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑊))
211, 2, 3, 4, 10, 12, 13, 16, 17pj1id 19615 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑇 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦)))
2221adantrl 713 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦)))
2322oveq2d 7428 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))))
245adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑊 ∈ LMod)
25 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
269adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇𝐿)
27 eqid 2731 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2827, 6lssss 20779 . . . . . . . . . 10 (𝑇𝐿𝑇 ⊆ (Base‘𝑊))
2926, 28syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (Base‘𝑊))
3010adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ∈ (SubGrp‘𝑊))
3112adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ∈ (SubGrp‘𝑊))
3213adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑈) = { 0 })
3316adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
341, 2, 3, 4, 30, 31, 32, 33, 17pj1f 19613 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
35 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 ∈ (𝑇 𝑈))
3634, 35ffvelcdmd 7087 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
3729, 36sseldd 3983 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊))
3811adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈𝐿)
3927, 6lssss 20779 . . . . . . . . . 10 (𝑈𝐿𝑈 ⊆ (Base‘𝑊))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ⊆ (Base‘𝑊))
411, 2, 3, 4, 30, 31, 32, 33, 17pj2f 19614 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
4241, 35ffvelcdmd 7087 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
4340, 42sseldd 3983 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))
44 eqid 2731 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
45 eqid 2731 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4627, 1, 19, 44, 45lmodvsdi 20727 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
4724, 25, 37, 43, 46syl13anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
4823, 47eqtrd 2771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
496, 2lsmcl 20927 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑇𝐿𝑈𝐿) → (𝑇 𝑈) ∈ 𝐿)
505, 9, 11, 49syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑇 𝑈) ∈ 𝐿)
5150adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇 𝑈) ∈ 𝐿)
5219, 44, 45, 6lssvscl 20798 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (𝑇 𝑈))
5324, 51, 25, 35, 52syl22anc 836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (𝑇 𝑈))
5419, 44, 45, 6lssvscl 20798 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑇𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)) → (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
5524, 26, 25, 36, 54syl22anc 836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
5619, 44, 45, 6lssvscl 20798 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)) → (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
5724, 38, 25, 42, 56syl22anc 836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
581, 2, 3, 4, 30, 31, 32, 33, 17, 53, 55, 57pj1eq 19616 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑥( ·𝑠𝑊)𝑦) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)))))
5948, 58mpbid 231 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
6059simpld 494 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
6160ralrimivva 3199 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
628, 50sseldd 3983 . . . . . 6 (𝜑 → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
63 eqid 2731 . . . . . . 7 (𝑊s (𝑇 𝑈)) = (𝑊s (𝑇 𝑈))
6463subgbas 19053 . . . . . 6 ((𝑇 𝑈) ∈ (SubGrp‘𝑊) → (𝑇 𝑈) = (Base‘(𝑊s (𝑇 𝑈))))
6562, 64syl 17 . . . . 5 (𝜑 → (𝑇 𝑈) = (Base‘(𝑊s (𝑇 𝑈))))
6665raleqdv 3324 . . . 4 (𝜑 → (∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))))
6766ralbidv 3176 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))))
6861, 67mpbid 231 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
6963, 6lsslmod 20803 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝐿) → (𝑊s (𝑇 𝑈)) ∈ LMod)
705, 50, 69syl2anc 583 . . 3 (𝜑 → (𝑊s (𝑇 𝑈)) ∈ LMod)
71 ovex 7445 . . . . 5 (𝑇 𝑈) ∈ V
7263, 19resssca 17295 . . . . 5 ((𝑇 𝑈) ∈ V → (Scalar‘𝑊) = (Scalar‘(𝑊s (𝑇 𝑈))))
7371, 72ax-mp 5 . . . 4 (Scalar‘𝑊) = (Scalar‘(𝑊s (𝑇 𝑈)))
74 eqid 2731 . . . 4 (Base‘(𝑊s (𝑇 𝑈))) = (Base‘(𝑊s (𝑇 𝑈)))
7563, 44ressvsca 17296 . . . . 5 ((𝑇 𝑈) ∈ V → ( ·𝑠𝑊) = ( ·𝑠 ‘(𝑊s (𝑇 𝑈))))
7671, 75ax-mp 5 . . . 4 ( ·𝑠𝑊) = ( ·𝑠 ‘(𝑊s (𝑇 𝑈)))
7773, 19, 45, 74, 76, 44islmhm3 20872 . . 3 (((𝑊s (𝑇 𝑈)) ∈ LMod ∧ 𝑊 ∈ LMod) → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))))
7870, 5, 77syl2anc 583 . 2 (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))))
7918, 20, 68, 78mpbir3and 1341 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  cin 3947  wss 3948  {csn 4628  cfv 6543  (class class class)co 7412  Basecbs 17151  s cress 17180  +gcplusg 17204  Scalarcsca 17207   ·𝑠 cvsca 17208  0gc0g 17392  SubGrpcsubg 19043   GrpHom cghm 19134  Cntzccntz 19227  LSSumclsm 19550  proj1cpj1 19551  Abelcabl 19697  LModclmod 20702  LSubSpclss 20774   LMHom clmhm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-sca 17220  df-vsca 17221  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-subg 19046  df-ghm 19135  df-cntz 19229  df-lsm 19552  df-pj1 19553  df-cmn 19698  df-abl 19699  df-mgp 20036  df-ur 20083  df-ring 20136  df-lmod 20704  df-lss 20775  df-lmhm 20866
This theorem is referenced by:  pj1lmhm2  20945  pjff  21578
  Copyright terms: Public domain W3C validator