MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lmhm Structured version   Visualization version   GIF version

Theorem pj1lmhm 20561
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1lmhm.l 𝐿 = (LSubSp‘𝑊)
pj1lmhm.s = (LSSum‘𝑊)
pj1lmhm.z 0 = (0g𝑊)
pj1lmhm.p 𝑃 = (proj1𝑊)
pj1lmhm.1 (𝜑𝑊 ∈ LMod)
pj1lmhm.2 (𝜑𝑇𝐿)
pj1lmhm.3 (𝜑𝑈𝐿)
pj1lmhm.4 (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
pj1lmhm (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))

Proof of Theorem pj1lmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (+g𝑊) = (+g𝑊)
2 pj1lmhm.s . . 3 = (LSSum‘𝑊)
3 pj1lmhm.z . . 3 0 = (0g𝑊)
4 eqid 2736 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 pj1lmhm.1 . . . . 5 (𝜑𝑊 ∈ LMod)
6 pj1lmhm.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
76lsssssubg 20419 . . . . 5 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . 4 (𝜑𝐿 ⊆ (SubGrp‘𝑊))
9 pj1lmhm.2 . . . 4 (𝜑𝑇𝐿)
108, 9sseldd 3945 . . 3 (𝜑𝑇 ∈ (SubGrp‘𝑊))
11 pj1lmhm.3 . . . 4 (𝜑𝑈𝐿)
128, 11sseldd 3945 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
13 pj1lmhm.4 . . 3 (𝜑 → (𝑇𝑈) = { 0 })
14 lmodabl 20369 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
155, 14syl 17 . . . 4 (𝜑𝑊 ∈ Abel)
164, 15, 10, 12ablcntzd 19635 . . 3 (𝜑𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
17 pj1lmhm.p . . 3 𝑃 = (proj1𝑊)
181, 2, 3, 4, 10, 12, 13, 16, 17pj1ghm 19485 . 2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊))
19 eqid 2736 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2019a1i 11 . 2 (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑊))
211, 2, 3, 4, 10, 12, 13, 16, 17pj1id 19481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑇 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦)))
2221adantrl 714 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦)))
2322oveq2d 7373 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))))
245adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑊 ∈ LMod)
25 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
269adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇𝐿)
27 eqid 2736 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2827, 6lssss 20397 . . . . . . . . . 10 (𝑇𝐿𝑇 ⊆ (Base‘𝑊))
2926, 28syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (Base‘𝑊))
3010adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ∈ (SubGrp‘𝑊))
3112adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ∈ (SubGrp‘𝑊))
3213adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑈) = { 0 })
3316adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
341, 2, 3, 4, 30, 31, 32, 33, 17pj1f 19479 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
35 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 ∈ (𝑇 𝑈))
3634, 35ffvelcdmd 7036 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
3729, 36sseldd 3945 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊))
3811adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈𝐿)
3927, 6lssss 20397 . . . . . . . . . 10 (𝑈𝐿𝑈 ⊆ (Base‘𝑊))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ⊆ (Base‘𝑊))
411, 2, 3, 4, 30, 31, 32, 33, 17pj2f 19480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
4241, 35ffvelcdmd 7036 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
4340, 42sseldd 3945 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))
44 eqid 2736 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
45 eqid 2736 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4627, 1, 19, 44, 45lmodvsdi 20345 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
4724, 25, 37, 43, 46syl13anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
4823, 47eqtrd 2776 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
496, 2lsmcl 20544 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑇𝐿𝑈𝐿) → (𝑇 𝑈) ∈ 𝐿)
505, 9, 11, 49syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝑇 𝑈) ∈ 𝐿)
5150adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇 𝑈) ∈ 𝐿)
5219, 44, 45, 6lssvscl 20416 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (𝑇 𝑈))
5324, 51, 25, 35, 52syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (𝑇 𝑈))
5419, 44, 45, 6lssvscl 20416 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑇𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)) → (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
5524, 26, 25, 36, 54syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
5619, 44, 45, 6lssvscl 20416 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)) → (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
5724, 38, 25, 42, 56syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
581, 2, 3, 4, 30, 31, 32, 33, 17, 53, 55, 57pj1eq 19482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑥( ·𝑠𝑊)𝑦) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)))))
5948, 58mpbid 231 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
6059simpld 495 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
6160ralrimivva 3197 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
628, 50sseldd 3945 . . . . . 6 (𝜑 → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
63 eqid 2736 . . . . . . 7 (𝑊s (𝑇 𝑈)) = (𝑊s (𝑇 𝑈))
6463subgbas 18932 . . . . . 6 ((𝑇 𝑈) ∈ (SubGrp‘𝑊) → (𝑇 𝑈) = (Base‘(𝑊s (𝑇 𝑈))))
6562, 64syl 17 . . . . 5 (𝜑 → (𝑇 𝑈) = (Base‘(𝑊s (𝑇 𝑈))))
6665raleqdv 3313 . . . 4 (𝜑 → (∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))))
6766ralbidv 3174 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))))
6861, 67mpbid 231 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
6963, 6lsslmod 20421 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝐿) → (𝑊s (𝑇 𝑈)) ∈ LMod)
705, 50, 69syl2anc 584 . . 3 (𝜑 → (𝑊s (𝑇 𝑈)) ∈ LMod)
71 ovex 7390 . . . . 5 (𝑇 𝑈) ∈ V
7263, 19resssca 17224 . . . . 5 ((𝑇 𝑈) ∈ V → (Scalar‘𝑊) = (Scalar‘(𝑊s (𝑇 𝑈))))
7371, 72ax-mp 5 . . . 4 (Scalar‘𝑊) = (Scalar‘(𝑊s (𝑇 𝑈)))
74 eqid 2736 . . . 4 (Base‘(𝑊s (𝑇 𝑈))) = (Base‘(𝑊s (𝑇 𝑈)))
7563, 44ressvsca 17225 . . . . 5 ((𝑇 𝑈) ∈ V → ( ·𝑠𝑊) = ( ·𝑠 ‘(𝑊s (𝑇 𝑈))))
7671, 75ax-mp 5 . . . 4 ( ·𝑠𝑊) = ( ·𝑠 ‘(𝑊s (𝑇 𝑈)))
7773, 19, 45, 74, 76, 44islmhm3 20489 . . 3 (((𝑊s (𝑇 𝑈)) ∈ LMod ∧ 𝑊 ∈ LMod) → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))))
7870, 5, 77syl2anc 584 . 2 (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))))
7918, 20, 68, 78mpbir3and 1342 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cin 3909  wss 3910  {csn 4586  cfv 6496  (class class class)co 7357  Basecbs 17083  s cress 17112  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  SubGrpcsubg 18922   GrpHom cghm 19005  Cntzccntz 19095  LSSumclsm 19416  proj1cpj1 19417  Abelcabl 19563  LModclmod 20322  LSubSpclss 20392   LMHom clmhm 20480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-sca 17149  df-vsca 17150  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cntz 19097  df-lsm 19418  df-pj1 19419  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-lmhm 20483
This theorem is referenced by:  pj1lmhm2  20562  pjff  21118
  Copyright terms: Public domain W3C validator