MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lmhm Structured version   Visualization version   GIF version

Theorem pj1lmhm 21099
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1lmhm.l 𝐿 = (LSubSp‘𝑊)
pj1lmhm.s = (LSSum‘𝑊)
pj1lmhm.z 0 = (0g𝑊)
pj1lmhm.p 𝑃 = (proj1𝑊)
pj1lmhm.1 (𝜑𝑊 ∈ LMod)
pj1lmhm.2 (𝜑𝑇𝐿)
pj1lmhm.3 (𝜑𝑈𝐿)
pj1lmhm.4 (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
pj1lmhm (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))

Proof of Theorem pj1lmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (+g𝑊) = (+g𝑊)
2 pj1lmhm.s . . 3 = (LSSum‘𝑊)
3 pj1lmhm.z . . 3 0 = (0g𝑊)
4 eqid 2737 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 pj1lmhm.1 . . . . 5 (𝜑𝑊 ∈ LMod)
6 pj1lmhm.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
76lsssssubg 20956 . . . . 5 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
85, 7syl 17 . . . 4 (𝜑𝐿 ⊆ (SubGrp‘𝑊))
9 pj1lmhm.2 . . . 4 (𝜑𝑇𝐿)
108, 9sseldd 3984 . . 3 (𝜑𝑇 ∈ (SubGrp‘𝑊))
11 pj1lmhm.3 . . . 4 (𝜑𝑈𝐿)
128, 11sseldd 3984 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑊))
13 pj1lmhm.4 . . 3 (𝜑 → (𝑇𝑈) = { 0 })
14 lmodabl 20907 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
155, 14syl 17 . . . 4 (𝜑𝑊 ∈ Abel)
164, 15, 10, 12ablcntzd 19875 . . 3 (𝜑𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
17 pj1lmhm.p . . 3 𝑃 = (proj1𝑊)
181, 2, 3, 4, 10, 12, 13, 16, 17pj1ghm 19721 . 2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊))
19 eqid 2737 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2019a1i 11 . 2 (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑊))
211, 2, 3, 4, 10, 12, 13, 16, 17pj1id 19717 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑇 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦)))
2221adantrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦)))
2322oveq2d 7447 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))))
245adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑊 ∈ LMod)
25 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
269adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇𝐿)
27 eqid 2737 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2827, 6lssss 20934 . . . . . . . . . 10 (𝑇𝐿𝑇 ⊆ (Base‘𝑊))
2926, 28syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (Base‘𝑊))
3010adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ∈ (SubGrp‘𝑊))
3112adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ∈ (SubGrp‘𝑊))
3213adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑈) = { 0 })
3316adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
341, 2, 3, 4, 30, 31, 32, 33, 17pj1f 19715 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
35 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 ∈ (𝑇 𝑈))
3634, 35ffvelcdmd 7105 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
3729, 36sseldd 3984 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊))
3811adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈𝐿)
3927, 6lssss 20934 . . . . . . . . . 10 (𝑈𝐿𝑈 ⊆ (Base‘𝑊))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ⊆ (Base‘𝑊))
411, 2, 3, 4, 30, 31, 32, 33, 17pj2f 19716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
4241, 35ffvelcdmd 7105 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
4340, 42sseldd 3984 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))
44 eqid 2737 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
45 eqid 2737 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4627, 1, 19, 44, 45lmodvsdi 20883 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝑊) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
4724, 25, 37, 43, 46syl13anc 1374 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)(((𝑇𝑃𝑈)‘𝑦)(+g𝑊)((𝑈𝑃𝑇)‘𝑦))) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
4823, 47eqtrd 2777 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
496, 2lsmcl 21082 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑇𝐿𝑈𝐿) → (𝑇 𝑈) ∈ 𝐿)
505, 9, 11, 49syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑇 𝑈) ∈ 𝐿)
5150adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇 𝑈) ∈ 𝐿)
5219, 44, 45, 6lssvscl 20953 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (𝑇 𝑈))
5324, 51, 25, 35, 52syl22anc 839 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (𝑇 𝑈))
5419, 44, 45, 6lssvscl 20953 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑇𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)) → (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
5524, 26, 25, 36, 54syl22anc 839 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
5619, 44, 45, 6lssvscl 20953 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)) → (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
5724, 38, 25, 42, 56syl22anc 839 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
581, 2, 3, 4, 30, 31, 32, 33, 17, 53, 55, 57pj1eq 19718 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑥( ·𝑠𝑊)𝑦) = ((𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))(+g𝑊)(𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦)))))
5948, 58mpbid 232 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑈𝑃𝑇)‘𝑦))))
6059simpld 494 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
6160ralrimivva 3202 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
628, 50sseldd 3984 . . . . . 6 (𝜑 → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
63 eqid 2737 . . . . . . 7 (𝑊s (𝑇 𝑈)) = (𝑊s (𝑇 𝑈))
6463subgbas 19148 . . . . . 6 ((𝑇 𝑈) ∈ (SubGrp‘𝑊) → (𝑇 𝑈) = (Base‘(𝑊s (𝑇 𝑈))))
6562, 64syl 17 . . . . 5 (𝜑 → (𝑇 𝑈) = (Base‘(𝑊s (𝑇 𝑈))))
6665raleqdv 3326 . . . 4 (𝜑 → (∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))))
6766ralbidv 3178 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (𝑇 𝑈)((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦))))
6861, 67mpbid 232 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))
6963, 6lsslmod 20958 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝐿) → (𝑊s (𝑇 𝑈)) ∈ LMod)
705, 50, 69syl2anc 584 . . 3 (𝜑 → (𝑊s (𝑇 𝑈)) ∈ LMod)
71 ovex 7464 . . . . 5 (𝑇 𝑈) ∈ V
7263, 19resssca 17387 . . . . 5 ((𝑇 𝑈) ∈ V → (Scalar‘𝑊) = (Scalar‘(𝑊s (𝑇 𝑈))))
7371, 72ax-mp 5 . . . 4 (Scalar‘𝑊) = (Scalar‘(𝑊s (𝑇 𝑈)))
74 eqid 2737 . . . 4 (Base‘(𝑊s (𝑇 𝑈))) = (Base‘(𝑊s (𝑇 𝑈)))
7563, 44ressvsca 17388 . . . . 5 ((𝑇 𝑈) ∈ V → ( ·𝑠𝑊) = ( ·𝑠 ‘(𝑊s (𝑇 𝑈))))
7671, 75ax-mp 5 . . . 4 ( ·𝑠𝑊) = ( ·𝑠 ‘(𝑊s (𝑇 𝑈)))
7773, 19, 45, 74, 76, 44islmhm3 21027 . . 3 (((𝑊s (𝑇 𝑈)) ∈ LMod ∧ 𝑊 ∈ LMod) → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))))
7870, 5, 77syl2anc 584 . 2 (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) GrpHom 𝑊) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘(𝑊s (𝑇 𝑈)))((𝑇𝑃𝑈)‘(𝑥( ·𝑠𝑊)𝑦)) = (𝑥( ·𝑠𝑊)((𝑇𝑃𝑈)‘𝑦)))))
7918, 20, 68, 78mpbir3and 1343 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cin 3950  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  SubGrpcsubg 19138   GrpHom cghm 19230  Cntzccntz 19333  LSSumclsm 19652  proj1cpj1 19653  Abelcabl 19799  LModclmod 20858  LSubSpclss 20929   LMHom clmhm 21018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-sca 17313  df-vsca 17314  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cntz 19335  df-lsm 19654  df-pj1 19655  df-cmn 19800  df-abl 19801  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930  df-lmhm 21021
This theorem is referenced by:  pj1lmhm2  21100  pjff  21732
  Copyright terms: Public domain W3C validator