Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmhmlem | Structured version Visualization version GIF version |
Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlem.k | ⊢ 𝐾 = (Scalar‘𝑆) |
lmhmlem.l | ⊢ 𝐿 = (Scalar‘𝑇) |
Ref | Expression |
---|---|
lmhmlem | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlem.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | lmhmlem.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | eqid 2758 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | eqid 2758 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
5 | eqid 2758 | . . 3 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
6 | eqid 2758 | . . 3 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 19872 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏))))) |
8 | 3simpa 1145 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏))) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)) | |
9 | 8 | anim2i 619 | . 2 ⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏)))) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
10 | 7, 9 | sylbi 220 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ‘cfv 6339 (class class class)co 7155 Basecbs 16546 Scalarcsca 16631 ·𝑠 cvsca 16632 GrpHom cghm 18427 LModclmod 19707 LMHom clmhm 19864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-iota 6298 df-fun 6341 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-lmhm 19867 |
This theorem is referenced by: lmhmsca 19875 lmghm 19876 lmhmlmod2 19877 lmhmlmod1 19878 |
Copyright terms: Public domain | W3C validator |