| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmlem | Structured version Visualization version GIF version | ||
| Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmlem.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| lmhmlem.l | ⊢ 𝐿 = (Scalar‘𝑇) |
| Ref | Expression |
|---|---|
| lmhmlem | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlem.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 2 | lmhmlem.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 5 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 6 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | islmhm 20934 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏))))) |
| 8 | 3simpa 1148 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏))) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)) | |
| 9 | 8 | anim2i 617 | . 2 ⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏)))) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
| 10 | 7, 9 | sylbi 217 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 GrpHom cghm 19144 LModclmod 20766 LMHom clmhm 20926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-lmhm 20929 |
| This theorem is referenced by: lmhmsca 20937 lmghm 20938 lmhmlmod2 20939 lmhmlmod1 20940 |
| Copyright terms: Public domain | W3C validator |