Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlem Structured version   Visualization version   GIF version

Theorem lmhmlem 19874
 Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlem.k 𝐾 = (Scalar‘𝑆)
lmhmlem.l 𝐿 = (Scalar‘𝑇)
Assertion
Ref Expression
lmhmlem (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)))

Proof of Theorem lmhmlem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlem.k . . 3 𝐾 = (Scalar‘𝑆)
2 lmhmlem.l . . 3 𝐿 = (Scalar‘𝑇)
3 eqid 2758 . . 3 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2758 . . 3 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2758 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
6 eqid 2758 . . 3 ( ·𝑠𝑇) = ( ·𝑠𝑇)
71, 2, 3, 4, 5, 6islmhm 19872 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))))
8 3simpa 1145 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏))) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))
98anim2i 619 . 2 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)))
107, 9sylbi 220 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ‘cfv 6339  (class class class)co 7155  Basecbs 16546  Scalarcsca 16631   ·𝑠 cvsca 16632   GrpHom cghm 18427  LModclmod 19707   LMHom clmhm 19864 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-iota 6298  df-fun 6341  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-lmhm 19867 This theorem is referenced by:  lmhmsca  19875  lmghm  19876  lmhmlmod2  19877  lmhmlmod1  19878
 Copyright terms: Public domain W3C validator