![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmhmlem | Structured version Visualization version GIF version |
Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlem.k | ⊢ 𝐾 = (Scalar‘𝑆) |
lmhmlem.l | ⊢ 𝐿 = (Scalar‘𝑇) |
Ref | Expression |
---|---|
lmhmlem | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlem.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | lmhmlem.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | eqid 2735 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
5 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
6 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 21044 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏))))) |
8 | 3simpa 1147 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏))) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)) | |
9 | 8 | anim2i 617 | . 2 ⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏)))) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
10 | 7, 9 | sylbi 217 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 GrpHom cghm 19243 LModclmod 20875 LMHom clmhm 21036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-lmhm 21039 |
This theorem is referenced by: lmhmsca 21047 lmghm 21048 lmhmlmod2 21049 lmhmlmod1 21050 |
Copyright terms: Public domain | W3C validator |