MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem2 Structured version   Visualization version   GIF version

Theorem dvgt0lem2 26062
Description: Lemma for dvgt0 26063 and dvlt0 26064. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvgt0lem.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
dvgt0lem.o 𝑂 Or ℝ
dvgt0lem.i (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥)𝑂(𝐹𝑦))
Assertion
Ref Expression
dvgt0lem2 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem dvgt0lem2
StepHypRef Expression
1 dvgt0lem.i . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥)𝑂(𝐹𝑦))
21ex 412 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
32ralrimivva 3208 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
4 dvgt0.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5 dvgt0.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
6 iccssre 13489 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
74, 5, 6syl2anc 583 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ltso 11370 . . . . . 6 < Or ℝ
9 soss 5628 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴[,]𝐵)))
107, 8, 9mpisyl 21 . . . . 5 (𝜑 → < Or (𝐴[,]𝐵))
11 dvgt0lem.o . . . . . 6 𝑂 Or ℝ
1211a1i 11 . . . . 5 (𝜑𝑂 Or ℝ)
13 dvgt0.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
14 cncff 24938 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
16 ssidd 4032 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))
17 soisores 7363 . . . . 5 ((( < Or (𝐴[,]𝐵) ∧ 𝑂 Or ℝ) ∧ (𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
1810, 12, 15, 16, 17syl22anc 838 . . . 4 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
193, 18mpbird 257 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))
20 ffn 6747 . . . . 5 (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵))
2113, 14, 203syl 18 . . . 4 (𝜑𝐹 Fn (𝐴[,]𝐵))
22 fnresdm 6699 . . . 4 (𝐹 Fn (𝐴[,]𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) = 𝐹)
23 isoeq1 7353 . . . 4 ((𝐹 ↾ (𝐴[,]𝐵)) = 𝐹 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))))
2421, 22, 233syl 18 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))))
2519, 24mpbid 232 . 2 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))
26 fnima 6710 . . 3 (𝐹 Fn (𝐴[,]𝐵) → (𝐹 “ (𝐴[,]𝐵)) = ran 𝐹)
27 isoeq5 7357 . . 3 ((𝐹 “ (𝐴[,]𝐵)) = ran 𝐹 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)))
2821, 26, 273syl 18 . 2 (𝜑 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)))
2925, 28mpbid 232 1 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166   Or wor 5606  ran crn 5701  cres 5702  cima 5703   Fn wfn 6568  wf 6569  cfv 6573   Isom wiso 6574  (class class class)co 7448  cr 11183   < clt 11324  (,)cioo 13407  [,]cicc 13410  cnccncf 24921   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414  df-cncf 24923
This theorem is referenced by:  dvgt0  26063  dvlt0  26064
  Copyright terms: Public domain W3C validator