![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvgt0lem2 | Structured version Visualization version GIF version |
Description: Lemma for dvgt0 26063 and dvlt0 26064. (Contributed by Mario Carneiro, 19-Feb-2015.) |
Ref | Expression |
---|---|
dvgt0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvgt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvgt0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
dvgt0lem.d | ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆) |
dvgt0lem.o | ⊢ 𝑂 Or ℝ |
dvgt0lem.i | ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)𝑂(𝐹‘𝑦)) |
Ref | Expression |
---|---|
dvgt0lem2 | ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvgt0lem.i | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)𝑂(𝐹‘𝑦)) | |
2 | 1 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
3 | 2 | ralrimivva 3208 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
4 | dvgt0.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | dvgt0.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | iccssre 13489 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
7 | 4, 5, 6 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
8 | ltso 11370 | . . . . . 6 ⊢ < Or ℝ | |
9 | soss 5628 | . . . . . 6 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴[,]𝐵))) | |
10 | 7, 8, 9 | mpisyl 21 | . . . . 5 ⊢ (𝜑 → < Or (𝐴[,]𝐵)) |
11 | dvgt0lem.o | . . . . . 6 ⊢ 𝑂 Or ℝ | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑂 Or ℝ) |
13 | dvgt0.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
14 | cncff 24938 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
16 | ssidd 4032 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵)) | |
17 | soisores 7363 | . . . . 5 ⊢ ((( < Or (𝐴[,]𝐵) ∧ 𝑂 Or ℝ) ∧ (𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) | |
18 | 10, 12, 15, 16, 17 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) |
19 | 3, 18 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))) |
20 | ffn 6747 | . . . . 5 ⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵)) | |
21 | 13, 14, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
22 | fnresdm 6699 | . . . 4 ⊢ (𝐹 Fn (𝐴[,]𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) = 𝐹) | |
23 | isoeq1 7353 | . . . 4 ⊢ ((𝐹 ↾ (𝐴[,]𝐵)) = 𝐹 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))) | |
24 | 21, 22, 23 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))) |
25 | 19, 24 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))) |
26 | fnima 6710 | . . 3 ⊢ (𝐹 Fn (𝐴[,]𝐵) → (𝐹 “ (𝐴[,]𝐵)) = ran 𝐹) | |
27 | isoeq5 7357 | . . 3 ⊢ ((𝐹 “ (𝐴[,]𝐵)) = ran 𝐹 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))) | |
28 | 21, 26, 27 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))) |
29 | 25, 28 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 class class class wbr 5166 Or wor 5606 ran crn 5701 ↾ cres 5702 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 Isom wiso 6574 (class class class)co 7448 ℝcr 11183 < clt 11324 (,)cioo 13407 [,]cicc 13410 –cn→ccncf 24921 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 df-cncf 24923 |
This theorem is referenced by: dvgt0 26063 dvlt0 26064 |
Copyright terms: Public domain | W3C validator |