MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem2 Structured version   Visualization version   GIF version

Theorem dvgt0lem2 24599
Description: Lemma for dvgt0 24600 and dvlt0 24601. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvgt0lem.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
dvgt0lem.o 𝑂 Or ℝ
dvgt0lem.i (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥)𝑂(𝐹𝑦))
Assertion
Ref Expression
dvgt0lem2 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem dvgt0lem2
StepHypRef Expression
1 dvgt0lem.i . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥)𝑂(𝐹𝑦))
21ex 415 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
32ralrimivva 3191 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
4 dvgt0.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5 dvgt0.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
6 iccssre 12817 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
74, 5, 6syl2anc 586 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ltso 10720 . . . . . 6 < Or ℝ
9 soss 5492 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴[,]𝐵)))
107, 8, 9mpisyl 21 . . . . 5 (𝜑 → < Or (𝐴[,]𝐵))
11 dvgt0lem.o . . . . . 6 𝑂 Or ℝ
1211a1i 11 . . . . 5 (𝜑𝑂 Or ℝ)
13 dvgt0.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
14 cncff 23500 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
16 ssidd 3989 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))
17 soisores 7079 . . . . 5 ((( < Or (𝐴[,]𝐵) ∧ 𝑂 Or ℝ) ∧ (𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
1810, 12, 15, 16, 17syl22anc 836 . . . 4 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
193, 18mpbird 259 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))
20 ffn 6513 . . . . 5 (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵))
2113, 14, 203syl 18 . . . 4 (𝜑𝐹 Fn (𝐴[,]𝐵))
22 fnresdm 6465 . . . 4 (𝐹 Fn (𝐴[,]𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) = 𝐹)
23 isoeq1 7069 . . . 4 ((𝐹 ↾ (𝐴[,]𝐵)) = 𝐹 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))))
2421, 22, 233syl 18 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))))
2519, 24mpbid 234 . 2 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))
26 fnima 6477 . . 3 (𝐹 Fn (𝐴[,]𝐵) → (𝐹 “ (𝐴[,]𝐵)) = ran 𝐹)
27 isoeq5 7073 . . 3 ((𝐹 “ (𝐴[,]𝐵)) = ran 𝐹 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)))
2821, 26, 273syl 18 . 2 (𝜑 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)))
2925, 28mpbid 234 1 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wss 3935   class class class wbr 5065   Or wor 5472  ran crn 5555  cres 5556  cima 5557   Fn wfn 6349  wf 6350  cfv 6354   Isom wiso 6355  (class class class)co 7155  cr 10535   < clt 10674  (,)cioo 12737  [,]cicc 12740  cnccncf 23483   D cdv 24460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-pre-lttri 10610  ax-pre-lttrn 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-icc 12744  df-cncf 23485
This theorem is referenced by:  dvgt0  24600  dvlt0  24601
  Copyright terms: Public domain W3C validator