MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem2 Structured version   Visualization version   GIF version

Theorem dvgt0lem2 25072
Description: Lemma for dvgt0 25073 and dvlt0 25074. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvgt0lem.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
dvgt0lem.o 𝑂 Or ℝ
dvgt0lem.i (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥)𝑂(𝐹𝑦))
Assertion
Ref Expression
dvgt0lem2 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem dvgt0lem2
StepHypRef Expression
1 dvgt0lem.i . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥)𝑂(𝐹𝑦))
21ex 412 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
32ralrimivva 3114 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦)))
4 dvgt0.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5 dvgt0.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
6 iccssre 13090 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
74, 5, 6syl2anc 583 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ltso 10986 . . . . . 6 < Or ℝ
9 soss 5514 . . . . . 6 ((𝐴[,]𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴[,]𝐵)))
107, 8, 9mpisyl 21 . . . . 5 (𝜑 → < Or (𝐴[,]𝐵))
11 dvgt0lem.o . . . . . 6 𝑂 Or ℝ
1211a1i 11 . . . . 5 (𝜑𝑂 Or ℝ)
13 dvgt0.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
14 cncff 23962 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
16 ssidd 3940 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))
17 soisores 7178 . . . . 5 ((( < Or (𝐴[,]𝐵) ∧ 𝑂 Or ℝ) ∧ (𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
1810, 12, 15, 16, 17syl22anc 835 . . . 4 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥)𝑂(𝐹𝑦))))
193, 18mpbird 256 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))
20 ffn 6584 . . . . 5 (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵))
2113, 14, 203syl 18 . . . 4 (𝜑𝐹 Fn (𝐴[,]𝐵))
22 fnresdm 6535 . . . 4 (𝐹 Fn (𝐴[,]𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) = 𝐹)
23 isoeq1 7168 . . . 4 ((𝐹 ↾ (𝐴[,]𝐵)) = 𝐹 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))))
2421, 22, 233syl 18 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))))
2519, 24mpbid 231 . 2 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))
26 fnima 6547 . . 3 (𝐹 Fn (𝐴[,]𝐵) → (𝐹 “ (𝐴[,]𝐵)) = ran 𝐹)
27 isoeq5 7172 . . 3 ((𝐹 “ (𝐴[,]𝐵)) = ran 𝐹 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)))
2821, 26, 273syl 18 . 2 (𝜑 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)))
2925, 28mpbid 231 1 (𝜑𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   class class class wbr 5070   Or wor 5493  ran crn 5581  cres 5582  cima 5583   Fn wfn 6413  wf 6414  cfv 6418   Isom wiso 6419  (class class class)co 7255  cr 10801   < clt 10940  (,)cioo 13008  [,]cicc 13011  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-icc 13015  df-cncf 23947
This theorem is referenced by:  dvgt0  25073  dvlt0  25074
  Copyright terms: Public domain W3C validator