Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvgt0lem2 | Structured version Visualization version GIF version |
Description: Lemma for dvgt0 25073 and dvlt0 25074. (Contributed by Mario Carneiro, 19-Feb-2015.) |
Ref | Expression |
---|---|
dvgt0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvgt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvgt0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
dvgt0lem.d | ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆) |
dvgt0lem.o | ⊢ 𝑂 Or ℝ |
dvgt0lem.i | ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)𝑂(𝐹‘𝑦)) |
Ref | Expression |
---|---|
dvgt0lem2 | ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvgt0lem.i | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)𝑂(𝐹‘𝑦)) | |
2 | 1 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
3 | 2 | ralrimivva 3114 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
4 | dvgt0.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | dvgt0.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | iccssre 13090 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
7 | 4, 5, 6 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
8 | ltso 10986 | . . . . . 6 ⊢ < Or ℝ | |
9 | soss 5514 | . . . . . 6 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴[,]𝐵))) | |
10 | 7, 8, 9 | mpisyl 21 | . . . . 5 ⊢ (𝜑 → < Or (𝐴[,]𝐵)) |
11 | dvgt0lem.o | . . . . . 6 ⊢ 𝑂 Or ℝ | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑂 Or ℝ) |
13 | dvgt0.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
14 | cncff 23962 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
16 | ssidd 3940 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵)) | |
17 | soisores 7178 | . . . . 5 ⊢ ((( < Or (𝐴[,]𝐵) ∧ 𝑂 Or ℝ) ∧ (𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) | |
18 | 10, 12, 15, 16, 17 | syl22anc 835 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) |
19 | 3, 18 | mpbird 256 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))) |
20 | ffn 6584 | . . . . 5 ⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵)) | |
21 | 13, 14, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
22 | fnresdm 6535 | . . . 4 ⊢ (𝐹 Fn (𝐴[,]𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) = 𝐹) | |
23 | isoeq1 7168 | . . . 4 ⊢ ((𝐹 ↾ (𝐴[,]𝐵)) = 𝐹 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))) | |
24 | 21, 22, 23 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))) |
25 | 19, 24 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))) |
26 | fnima 6547 | . . 3 ⊢ (𝐹 Fn (𝐴[,]𝐵) → (𝐹 “ (𝐴[,]𝐵)) = ran 𝐹) | |
27 | isoeq5 7172 | . . 3 ⊢ ((𝐹 “ (𝐴[,]𝐵)) = ran 𝐹 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))) | |
28 | 21, 26, 27 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))) |
29 | 25, 28 | mpbid 231 | 1 ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 class class class wbr 5070 Or wor 5493 ran crn 5581 ↾ cres 5582 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 Isom wiso 6419 (class class class)co 7255 ℝcr 10801 < clt 10940 (,)cioo 13008 [,]cicc 13011 –cn→ccncf 23945 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 df-cncf 23947 |
This theorem is referenced by: dvgt0 25073 dvlt0 25074 |
Copyright terms: Public domain | W3C validator |