| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvgt0lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for dvgt0 25961 and dvlt0 25962. (Contributed by Mario Carneiro, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvgt0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvgt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvgt0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvgt0lem.d | ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆) |
| dvgt0lem.o | ⊢ 𝑂 Or ℝ |
| dvgt0lem.i | ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)𝑂(𝐹‘𝑦)) |
| Ref | Expression |
|---|---|
| dvgt0lem2 | ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0lem.i | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)𝑂(𝐹‘𝑦)) | |
| 2 | 1 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
| 3 | 2 | ralrimivva 3187 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦))) |
| 4 | dvgt0.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 5 | dvgt0.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | iccssre 13446 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 8 | ltso 11315 | . . . . . 6 ⊢ < Or ℝ | |
| 9 | soss 5581 | . . . . . 6 ⊢ ((𝐴[,]𝐵) ⊆ ℝ → ( < Or ℝ → < Or (𝐴[,]𝐵))) | |
| 10 | 7, 8, 9 | mpisyl 21 | . . . . 5 ⊢ (𝜑 → < Or (𝐴[,]𝐵)) |
| 11 | dvgt0lem.o | . . . . . 6 ⊢ 𝑂 Or ℝ | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑂 Or ℝ) |
| 13 | dvgt0.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 14 | cncff 24837 | . . . . . 6 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 16 | ssidd 3982 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵)) | |
| 17 | soisores 7320 | . . . . 5 ⊢ ((( < Or (𝐴[,]𝐵) ∧ 𝑂 Or ℝ) ∧ (𝐹:(𝐴[,]𝐵)⟶ℝ ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) | |
| 18 | 10, 12, 15, 16, 17 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥)𝑂(𝐹‘𝑦)))) |
| 19 | 3, 18 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))) |
| 20 | ffn 6706 | . . . . 5 ⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵)) | |
| 21 | 13, 14, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
| 22 | fnresdm 6657 | . . . 4 ⊢ (𝐹 Fn (𝐴[,]𝐵) → (𝐹 ↾ (𝐴[,]𝐵)) = 𝐹) | |
| 23 | isoeq1 7310 | . . . 4 ⊢ ((𝐹 ↾ (𝐴[,]𝐵)) = 𝐹 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))) | |
| 24 | 21, 22, 23 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵)) Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))))) |
| 25 | 19, 24 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵)))) |
| 26 | fnima 6668 | . . 3 ⊢ (𝐹 Fn (𝐴[,]𝐵) → (𝐹 “ (𝐴[,]𝐵)) = ran 𝐹) | |
| 27 | isoeq5 7314 | . . 3 ⊢ ((𝐹 “ (𝐴[,]𝐵)) = ran 𝐹 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))) | |
| 28 | 21, 26, 27 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), (𝐹 “ (𝐴[,]𝐵))) ↔ 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹))) |
| 29 | 25, 28 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 class class class wbr 5119 Or wor 5560 ran crn 5655 ↾ cres 5656 “ cima 5657 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 Isom wiso 6532 (class class class)co 7405 ℝcr 11128 < clt 11269 (,)cioo 13362 [,]cicc 13365 –cn→ccncf 24820 D cdv 25816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-icc 13369 df-cncf 24822 |
| This theorem is referenced by: dvgt0 25961 dvlt0 25962 |
| Copyright terms: Public domain | W3C validator |