Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprmidl Structured version   Visualization version   GIF version

Theorem isprmidl 31127
 Description: The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
isprmidl (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Distinct variable groups:   𝑅,𝑎,𝑏,𝑥,𝑦   𝑃,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑎,𝑏)   · (𝑥,𝑦,𝑎,𝑏)

Proof of Theorem isprmidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmidlval.1 . . . . 5 𝐵 = (Base‘𝑅)
2 prmidlval.2 . . . . 5 · = (.r𝑅)
31, 2prmidlval 31126 . . . 4 (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
43eleq2d 2838 . . 3 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ 𝑃 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))}))
5 neeq1 3014 . . . . 5 (𝑖 = 𝑃 → (𝑖𝐵𝑃𝐵))
6 eleq2 2841 . . . . . . . 8 (𝑖 = 𝑃 → ((𝑥 · 𝑦) ∈ 𝑖 ↔ (𝑥 · 𝑦) ∈ 𝑃))
762ralbidv 3129 . . . . . . 7 (𝑖 = 𝑃 → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 ↔ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃))
8 sseq2 3919 . . . . . . . 8 (𝑖 = 𝑃 → (𝑎𝑖𝑎𝑃))
9 sseq2 3919 . . . . . . . 8 (𝑖 = 𝑃 → (𝑏𝑖𝑏𝑃))
108, 9orbi12d 917 . . . . . . 7 (𝑖 = 𝑃 → ((𝑎𝑖𝑏𝑖) ↔ (𝑎𝑃𝑏𝑃)))
117, 10imbi12d 349 . . . . . 6 (𝑖 = 𝑃 → ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
12112ralbidv 3129 . . . . 5 (𝑖 = 𝑃 → (∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
135, 12anbi12d 634 . . . 4 (𝑖 = 𝑃 → ((𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))) ↔ (𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
1413elrab 3603 . . 3 (𝑃 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
154, 14bitrdi 290 . 2 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))))
16 3anass 1093 . 2 ((𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
1715, 16bitr4di 293 1 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∨ wo 845   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  {crab 3075   ⊆ wss 3859  ‘cfv 6336  (class class class)co 7151  Basecbs 16534  .rcmulr 16617  Ringcrg 19358  LIdealclidl 20003  PrmIdealcprmidl 31124 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6295  df-fun 6338  df-fv 6344  df-ov 7154  df-prmidl 31125 This theorem is referenced by:  prmidlnr  31128  prmidl  31129  prmidl2  31130  prmidlidl  31133
 Copyright terms: Public domain W3C validator