Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isprmidl Structured version   Visualization version   GIF version

Theorem isprmidl 30955
Description: The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
isprmidl (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Distinct variable groups:   𝑅,𝑎,𝑏,𝑥,𝑦   𝑃,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑎,𝑏)   · (𝑥,𝑦,𝑎,𝑏)

Proof of Theorem isprmidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 prmidlval.1 . . . . 5 𝐵 = (Base‘𝑅)
2 prmidlval.2 . . . . 5 · = (.r𝑅)
31, 2prmidlval 30954 . . . 4 (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
43eleq2d 2898 . . 3 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ 𝑃 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))}))
5 neeq1 3078 . . . . 5 (𝑖 = 𝑃 → (𝑖𝐵𝑃𝐵))
6 eleq2 2901 . . . . . . . 8 (𝑖 = 𝑃 → ((𝑥 · 𝑦) ∈ 𝑖 ↔ (𝑥 · 𝑦) ∈ 𝑃))
762ralbidv 3199 . . . . . . 7 (𝑖 = 𝑃 → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 ↔ ∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃))
8 sseq2 3993 . . . . . . . 8 (𝑖 = 𝑃 → (𝑎𝑖𝑎𝑃))
9 sseq2 3993 . . . . . . . 8 (𝑖 = 𝑃 → (𝑏𝑖𝑏𝑃))
108, 9orbi12d 915 . . . . . . 7 (𝑖 = 𝑃 → ((𝑎𝑖𝑏𝑖) ↔ (𝑎𝑃𝑏𝑃)))
117, 10imbi12d 347 . . . . . 6 (𝑖 = 𝑃 → ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
12112ralbidv 3199 . . . . 5 (𝑖 = 𝑃 → (∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)) ↔ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
135, 12anbi12d 632 . . . 4 (𝑖 = 𝑃 → ((𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖))) ↔ (𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
1413elrab 3680 . . 3 (𝑃 ∈ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))} ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
154, 14syl6bb 289 . 2 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))))
16 3anass 1091 . 2 ((𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ (𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
1715, 16syl6bbr 291 1 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  wss 3936  cfv 6355  (class class class)co 7156  Basecbs 16483  .rcmulr 16566  Ringcrg 19297  LIdealclidl 19942  PrmIdealcprmidl 30952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-prmidl 30953
This theorem is referenced by:  prmidlnr  30956  prmidl  30957  prmidl2  30958  prmidlidl  30960
  Copyright terms: Public domain W3C validator