![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmidlnr | Structured version Visualization version GIF version |
Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
Ref | Expression |
---|---|
prmidlval.1 | β’ π΅ = (Baseβπ ) |
prmidlval.2 | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
prmidlnr | β’ ((π β Ring β§ π β (PrmIdealβπ )) β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmidlval.1 | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | prmidlval.2 | . . . 4 β’ Β· = (.rβπ ) | |
3 | 1, 2 | isprmidl 32556 | . . 3 β’ (π β Ring β (π β (PrmIdealβπ ) β (π β (LIdealβπ ) β§ π β π΅ β§ βπ β (LIdealβπ )βπ β (LIdealβπ )(βπ₯ β π βπ¦ β π (π₯ Β· π¦) β π β (π β π β¨ π β π))))) |
4 | 3 | biimpa 478 | . 2 β’ ((π β Ring β§ π β (PrmIdealβπ )) β (π β (LIdealβπ ) β§ π β π΅ β§ βπ β (LIdealβπ )βπ β (LIdealβπ )(βπ₯ β π βπ¦ β π (π₯ Β· π¦) β π β (π β π β¨ π β π)))) |
5 | 4 | simp2d 1144 | 1 β’ ((π β Ring β§ π β (PrmIdealβπ )) β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β¨ wo 846 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2941 βwral 3062 β wss 3949 βcfv 6544 (class class class)co 7409 Basecbs 17144 .rcmulr 17198 Ringcrg 20056 LIdealclidl 20783 PrmIdealcprmidl 32553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-prmidl 32554 |
This theorem is referenced by: isprmidlc 32566 0ringprmidl 32568 rhmpreimaprmidl 32570 zarcls1 32849 zarclssn 32853 |
Copyright terms: Public domain | W3C validator |