Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidlnr Structured version   Visualization version   GIF version

Theorem prmidlnr 33448
Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidlnr ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)

Proof of Theorem prmidlnr
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmidlval.1 . . . 4 𝐵 = (Base‘𝑅)
2 prmidlval.2 . . . 4 · = (.r𝑅)
31, 2isprmidl 33447 . . 3 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
43biimpa 476 . 2 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
54simp2d 1143 1 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → 𝑃𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wss 3898  cfv 6489  (class class class)co 7355  Basecbs 17127  .rcmulr 17169  Ringcrg 20159  LIdealclidl 21152  PrmIdealcprmidl 33444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-prmidl 33445
This theorem is referenced by:  isprmidlc  33456  0ringprmidl  33458  rhmpreimaprmidl  33460  rsprprmprmidlb  33532  dfufd2lem  33558  dfufd2  33559  zarcls1  33954  zarclssn  33958
  Copyright terms: Public domain W3C validator