Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidlnr Structured version   Visualization version   GIF version

Theorem prmidlnr 33063
Description: A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐡 = (Baseβ€˜π‘…)
prmidlval.2 Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
prmidlnr ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑃 β‰  𝐡)

Proof of Theorem prmidlnr
Dummy variables π‘Ž 𝑏 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmidlval.1 . . . 4 𝐡 = (Baseβ€˜π‘…)
2 prmidlval.2 . . . 4 Β· = (.rβ€˜π‘…)
31, 2isprmidl 33062 . . 3 (𝑅 ∈ Ring β†’ (𝑃 ∈ (PrmIdealβ€˜π‘…) ↔ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  𝐡 ∧ βˆ€π‘Ž ∈ (LIdealβ€˜π‘…)βˆ€π‘ ∈ (LIdealβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘Ž βŠ† 𝑃 ∨ 𝑏 βŠ† 𝑃)))))
43biimpa 476 . 2 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ (𝑃 ∈ (LIdealβ€˜π‘…) ∧ 𝑃 β‰  𝐡 ∧ βˆ€π‘Ž ∈ (LIdealβ€˜π‘…)βˆ€π‘ ∈ (LIdealβ€˜π‘…)(βˆ€π‘₯ ∈ π‘Ž βˆ€π‘¦ ∈ 𝑏 (π‘₯ Β· 𝑦) ∈ 𝑃 β†’ (π‘Ž βŠ† 𝑃 ∨ 𝑏 βŠ† 𝑃))))
54simp2d 1140 1 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdealβ€˜π‘…)) β†’ 𝑃 β‰  𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∨ wo 844   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055   βŠ† wss 3943  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  .rcmulr 17207  Ringcrg 20138  LIdealclidl 21065  PrmIdealcprmidl 33059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545  df-ov 7408  df-prmidl 33060
This theorem is referenced by:  isprmidlc  33072  0ringprmidl  33074  rhmpreimaprmidl  33076  zarcls1  33379  zarclssn  33383
  Copyright terms: Public domain W3C validator