| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | raleq 3323 | . . . . 5
⊢ (𝑏 = 𝐽 → (∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃)) | 
| 2 | 1 | ralbidv 3178 | . . . 4
⊢ (𝑏 = 𝐽 → (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃)) | 
| 3 |  | sseq1 4009 | . . . . 5
⊢ (𝑏 = 𝐽 → (𝑏 ⊆ 𝑃 ↔ 𝐽 ⊆ 𝑃)) | 
| 4 | 3 | orbi2d 916 | . . . 4
⊢ (𝑏 = 𝐽 → ((𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃) ↔ (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃))) | 
| 5 | 2, 4 | imbi12d 344 | . . 3
⊢ (𝑏 = 𝐽 → ((∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) ↔ (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)))) | 
| 6 |  | raleq 3323 | . . . . . 6
⊢ (𝑎 = 𝐼 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃)) | 
| 7 |  | sseq1 4009 | . . . . . . 7
⊢ (𝑎 = 𝐼 → (𝑎 ⊆ 𝑃 ↔ 𝐼 ⊆ 𝑃)) | 
| 8 | 7 | orbi1d 917 | . . . . . 6
⊢ (𝑎 = 𝐼 → ((𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃) ↔ (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) | 
| 9 | 6, 8 | imbi12d 344 | . . . . 5
⊢ (𝑎 = 𝐼 → ((∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) ↔ (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) | 
| 10 | 9 | ralbidv 3178 | . . . 4
⊢ (𝑎 = 𝐼 → (∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) ↔ ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) | 
| 11 |  | prmidlval.1 | . . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) | 
| 12 |  | prmidlval.2 | . . . . . . . 8
⊢  · =
(.r‘𝑅) | 
| 13 | 11, 12 | isprmidl 33466 | . . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | 
| 14 | 13 | biimpa 476 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) | 
| 15 | 14 | simp3d 1145 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) | 
| 16 | 15 | adantr 480 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) | 
| 17 |  | simprl 771 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐼 ∈ (LIdeal‘𝑅)) | 
| 18 | 10, 16, 17 | rspcdva 3623 | . . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) | 
| 19 |  | simprr 773 | . . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐽 ∈ (LIdeal‘𝑅)) | 
| 20 | 5, 18, 19 | rspcdva 3623 | . 2
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃))) | 
| 21 | 20 | imp 406 | 1
⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |