Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl Structured version   Visualization version   GIF version

Theorem prmidl 33387
Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidl ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐼   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐼(𝑦)

Proof of Theorem prmidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3287 . . . . 5 (𝑏 = 𝐽 → (∀𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃))
21ralbidv 3152 . . . 4 (𝑏 = 𝐽 → (∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃))
3 sseq1 3963 . . . . 5 (𝑏 = 𝐽 → (𝑏𝑃𝐽𝑃))
43orbi2d 915 . . . 4 (𝑏 = 𝐽 → ((𝐼𝑃𝑏𝑃) ↔ (𝐼𝑃𝐽𝑃)))
52, 4imbi12d 344 . . 3 (𝑏 = 𝐽 → ((∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃)) ↔ (∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝐽𝑃))))
6 raleq 3287 . . . . . 6 (𝑎 = 𝐼 → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃))
7 sseq1 3963 . . . . . . 7 (𝑎 = 𝐼 → (𝑎𝑃𝐼𝑃))
87orbi1d 916 . . . . . 6 (𝑎 = 𝐼 → ((𝑎𝑃𝑏𝑃) ↔ (𝐼𝑃𝑏𝑃)))
96, 8imbi12d 344 . . . . 5 (𝑎 = 𝐼 → ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ (∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃))))
109ralbidv 3152 . . . 4 (𝑎 = 𝐼 → (∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃))))
11 prmidlval.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
12 prmidlval.2 . . . . . . . 8 · = (.r𝑅)
1311, 12isprmidl 33385 . . . . . . 7 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
1413biimpa 476 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
1514simp3d 1144 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
1615adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
17 simprl 770 . . . 4 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐼 ∈ (LIdeal‘𝑅))
1810, 16, 17rspcdva 3580 . . 3 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃)))
19 simprr 772 . . 3 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐽 ∈ (LIdeal‘𝑅))
205, 18, 19rspcdva 3580 . 2 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → (∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝐽𝑃)))
2120imp 406 1 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3905  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  Ringcrg 20136  LIdealclidl 21131  PrmIdealcprmidl 33382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-prmidl 33383
This theorem is referenced by:  idlmulssprm  33389  isprmidlc  33394
  Copyright terms: Public domain W3C validator