Step | Hyp | Ref
| Expression |
1 | | raleq 3342 |
. . . . 5
⊢ (𝑏 = 𝐽 → (∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃)) |
2 | 1 | ralbidv 3112 |
. . . 4
⊢ (𝑏 = 𝐽 → (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃)) |
3 | | sseq1 3946 |
. . . . 5
⊢ (𝑏 = 𝐽 → (𝑏 ⊆ 𝑃 ↔ 𝐽 ⊆ 𝑃)) |
4 | 3 | orbi2d 913 |
. . . 4
⊢ (𝑏 = 𝐽 → ((𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃) ↔ (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃))) |
5 | 2, 4 | imbi12d 345 |
. . 3
⊢ (𝑏 = 𝐽 → ((∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) ↔ (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)))) |
6 | | raleq 3342 |
. . . . . 6
⊢ (𝑎 = 𝐼 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃)) |
7 | | sseq1 3946 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → (𝑎 ⊆ 𝑃 ↔ 𝐼 ⊆ 𝑃)) |
8 | 7 | orbi1d 914 |
. . . . . 6
⊢ (𝑎 = 𝐼 → ((𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃) ↔ (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) |
9 | 6, 8 | imbi12d 345 |
. . . . 5
⊢ (𝑎 = 𝐼 → ((∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) ↔ (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) |
10 | 9 | ralbidv 3112 |
. . . 4
⊢ (𝑎 = 𝐼 → (∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)) ↔ ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) |
11 | | prmidlval.1 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
12 | | prmidlval.2 |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
13 | 11, 12 | isprmidl 31613 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) |
14 | 13 | biimpa 477 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃)))) |
15 | 14 | simp3d 1143 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) |
16 | 15 | adantr 481 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) |
17 | | simprl 768 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐼 ∈ (LIdeal‘𝑅)) |
18 | 10, 16, 17 | rspcdva 3562 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))) |
19 | | simprr 770 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐽 ∈ (LIdeal‘𝑅)) |
20 | 5, 18, 19 | rspcdva 3562 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → (∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃))) |
21 | 20 | imp 407 |
1
⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |