Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl Structured version   Visualization version   GIF version

Theorem prmidl 33252
Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidl ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐼   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐼(𝑦)

Proof of Theorem prmidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3311 . . . . 5 (𝑏 = 𝐽 → (∀𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃))
21ralbidv 3167 . . . 4 (𝑏 = 𝐽 → (∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃))
3 sseq1 4002 . . . . 5 (𝑏 = 𝐽 → (𝑏𝑃𝐽𝑃))
43orbi2d 913 . . . 4 (𝑏 = 𝐽 → ((𝐼𝑃𝑏𝑃) ↔ (𝐼𝑃𝐽𝑃)))
52, 4imbi12d 343 . . 3 (𝑏 = 𝐽 → ((∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃)) ↔ (∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝐽𝑃))))
6 raleq 3311 . . . . . 6 (𝑎 = 𝐼 → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃))
7 sseq1 4002 . . . . . . 7 (𝑎 = 𝐼 → (𝑎𝑃𝐼𝑃))
87orbi1d 914 . . . . . 6 (𝑎 = 𝐼 → ((𝑎𝑃𝑏𝑃) ↔ (𝐼𝑃𝑏𝑃)))
96, 8imbi12d 343 . . . . 5 (𝑎 = 𝐼 → ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ (∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃))))
109ralbidv 3167 . . . 4 (𝑎 = 𝐼 → (∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃))))
11 prmidlval.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
12 prmidlval.2 . . . . . . . 8 · = (.r𝑅)
1311, 12isprmidl 33250 . . . . . . 7 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
1413biimpa 475 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
1514simp3d 1141 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
1615adantr 479 . . . 4 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
17 simprl 769 . . . 4 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐼 ∈ (LIdeal‘𝑅))
1810, 16, 17rspcdva 3607 . . 3 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃)))
19 simprr 771 . . 3 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐽 ∈ (LIdeal‘𝑅))
205, 18, 19rspcdva 3607 . 2 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → (∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝐽𝑃)))
2120imp 405 1 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wss 3944  cfv 6549  (class class class)co 7419  Basecbs 17183  .rcmulr 17237  Ringcrg 20185  LIdealclidl 21114  PrmIdealcprmidl 33247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-prmidl 33248
This theorem is referenced by:  idlmulssprm  33254  isprmidlc  33259
  Copyright terms: Public domain W3C validator