Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl Structured version   Visualization version   GIF version

Theorem prmidl 31912
Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidl ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐼   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐼(𝑦)

Proof of Theorem prmidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3305 . . . . 5 (𝑏 = 𝐽 → (∀𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃))
21ralbidv 3170 . . . 4 (𝑏 = 𝐽 → (∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃))
3 sseq1 3957 . . . . 5 (𝑏 = 𝐽 → (𝑏𝑃𝐽𝑃))
43orbi2d 913 . . . 4 (𝑏 = 𝐽 → ((𝐼𝑃𝑏𝑃) ↔ (𝐼𝑃𝐽𝑃)))
52, 4imbi12d 344 . . 3 (𝑏 = 𝐽 → ((∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃)) ↔ (∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝐽𝑃))))
6 raleq 3305 . . . . . 6 (𝑎 = 𝐼 → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃))
7 sseq1 3957 . . . . . . 7 (𝑎 = 𝐼 → (𝑎𝑃𝐼𝑃))
87orbi1d 914 . . . . . 6 (𝑎 = 𝐼 → ((𝑎𝑃𝑏𝑃) ↔ (𝐼𝑃𝑏𝑃)))
96, 8imbi12d 344 . . . . 5 (𝑎 = 𝐼 → ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ (∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃))))
109ralbidv 3170 . . . 4 (𝑎 = 𝐼 → (∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃))))
11 prmidlval.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
12 prmidlval.2 . . . . . . . 8 · = (.r𝑅)
1311, 12isprmidl 31910 . . . . . . 7 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
1413biimpa 477 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
1514simp3d 1143 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
1615adantr 481 . . . 4 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
17 simprl 768 . . . 4 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐼 ∈ (LIdeal‘𝑅))
1810, 16, 17rspcdva 3571 . . 3 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃)))
19 simprr 770 . . 3 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐽 ∈ (LIdeal‘𝑅))
205, 18, 19rspcdva 3571 . 2 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → (∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝐽𝑃)))
2120imp 407 1 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  wss 3898  cfv 6479  (class class class)co 7337  Basecbs 17009  .rcmulr 17060  Ringcrg 19878  LIdealclidl 20538  PrmIdealcprmidl 31907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340  df-prmidl 31908
This theorem is referenced by:  idlmulssprm  31914  isprmidlc  31920
  Copyright terms: Public domain W3C validator