Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp2 Structured version   Visualization version   GIF version

Theorem ispsubsp2 38617
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l ≀ = (leβ€˜πΎ)
psubspset.j ∨ = (joinβ€˜πΎ)
psubspset.a 𝐴 = (Atomsβ€˜πΎ)
psubspset.s 𝑆 = (PSubSpβ€˜πΎ)
Assertion
Ref Expression
ispsubsp2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑆 ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))))
Distinct variable groups:   𝐴,π‘Ÿ   π‘ž,𝑝,π‘Ÿ,𝐾   𝑋,𝑝,π‘ž,π‘Ÿ   𝐴,𝑝,π‘ž
Allowed substitution hints:   𝐷(π‘Ÿ,π‘ž,𝑝)   𝑆(π‘Ÿ,π‘ž,𝑝)   ∨ (π‘Ÿ,π‘ž,𝑝)   ≀ (π‘Ÿ,π‘ž,𝑝)

Proof of Theorem ispsubsp2
StepHypRef Expression
1 psubspset.l . . 3 ≀ = (leβ€˜πΎ)
2 psubspset.j . . 3 ∨ = (joinβ€˜πΎ)
3 psubspset.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 psubspset.s . . 3 𝑆 = (PSubSpβ€˜πΎ)
51, 2, 3, 4ispsubsp 38616 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑆 ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))))
6 ralcom 3287 . . . . . . 7 (βˆ€π‘Ÿ ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ ∈ 𝐴 βˆ€π‘Ÿ ∈ 𝑋 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
7 r19.23v 3183 . . . . . . . 8 (βˆ€π‘Ÿ ∈ 𝑋 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
87ralbii 3094 . . . . . . 7 (βˆ€π‘ ∈ 𝐴 βˆ€π‘Ÿ ∈ 𝑋 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
96, 8bitri 275 . . . . . 6 (βˆ€π‘Ÿ ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
109ralbii 3094 . . . . 5 (βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ž ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
11 ralcom 3287 . . . . . 6 (βˆ€π‘ž ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝑋 (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
12 r19.23v 3183 . . . . . . 7 (βˆ€π‘ž ∈ 𝑋 (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ (βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
1312ralbii 3094 . . . . . 6 (βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝑋 (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
1411, 13bitri 275 . . . . 5 (βˆ€π‘ž ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
1510, 14bitri 275 . . . 4 (βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))
1615a1i 11 . . 3 (𝐾 ∈ 𝐷 β†’ (βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋) ↔ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋)))
1716anbi2d 630 . 2 (𝐾 ∈ 𝐷 β†’ ((𝑋 βŠ† 𝐴 ∧ βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝑋 βˆ€π‘ ∈ 𝐴 (𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋)) ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))))
185, 17bitrd 279 1 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑆 ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝐴 (βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑝 ≀ (π‘ž ∨ π‘Ÿ) β†’ 𝑝 ∈ 𝑋))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071   βŠ† wss 3949   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  lecple 17204  joincjn 18264  Atomscatm 38133  PSubSpcpsubsp 38367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-psubsp 38374
This theorem is referenced by:  psubspi  38618  paddclN  38713
  Copyright terms: Public domain W3C validator