Proof of Theorem ispsubsp2
Step | Hyp | Ref
| Expression |
1 | | psubspset.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
2 | | psubspset.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
3 | | psubspset.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | psubspset.s |
. . 3
⊢ 𝑆 = (PSubSp‘𝐾) |
5 | 1, 2, 3, 4 | ispsubsp 37686 |
. 2
⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |
6 | | ralcom 3280 |
. . . . . . 7
⊢
(∀𝑟 ∈
𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ∀𝑟 ∈ 𝑋 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
7 | | r19.23v 3207 |
. . . . . . . 8
⊢
(∀𝑟 ∈
𝑋 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
8 | 7 | ralbii 3090 |
. . . . . . 7
⊢
(∀𝑝 ∈
𝐴 ∀𝑟 ∈ 𝑋 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
9 | 6, 8 | bitri 274 |
. . . . . 6
⊢
(∀𝑟 ∈
𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
10 | 9 | ralbii 3090 |
. . . . 5
⊢
(∀𝑞 ∈
𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑞 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
11 | | ralcom 3280 |
. . . . . 6
⊢
(∀𝑞 ∈
𝑋 ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝑋 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
12 | | r19.23v 3207 |
. . . . . . 7
⊢
(∀𝑞 ∈
𝑋 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
13 | 12 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑝 ∈
𝐴 ∀𝑞 ∈ 𝑋 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
14 | 11, 13 | bitri 274 |
. . . . 5
⊢
(∀𝑞 ∈
𝑋 ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
15 | 10, 14 | bitri 274 |
. . . 4
⊢
(∀𝑞 ∈
𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
16 | 15 | a1i 11 |
. . 3
⊢ (𝐾 ∈ 𝐷 → (∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋))) |
17 | 16 | anbi2d 628 |
. 2
⊢ (𝐾 ∈ 𝐷 → ((𝑋 ⊆ 𝐴 ∧ ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |
18 | 5, 17 | bitrd 278 |
1
⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |