Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp2 Structured version   Visualization version   GIF version

Theorem ispsubsp2 39728
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟   𝐴,𝑝,𝑞
Allowed substitution hints:   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp2
StepHypRef Expression
1 psubspset.l . . 3 = (le‘𝐾)
2 psubspset.j . . 3 = (join‘𝐾)
3 psubspset.a . . 3 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 39727 . 2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋))))
6 ralcom 3257 . . . . . . 7 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋))
7 r19.23v 3156 . . . . . . . 8 (∀𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
87ralbii 3075 . . . . . . 7 (∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
96, 8bitri 275 . . . . . 6 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
109ralbii 3075 . . . . 5 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
11 ralcom 3257 . . . . . 6 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
12 r19.23v 3156 . . . . . . 7 (∀𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1312ralbii 3075 . . . . . 6 (∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1411, 13bitri 275 . . . . 5 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1510, 14bitri 275 . . . 4 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1615a1i 11 . . 3 (𝐾𝐷 → (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋)))
1716anbi2d 630 . 2 (𝐾𝐷 → ((𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋)) ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
185, 17bitrd 279 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  Atomscatm 39244  PSubSpcpsubsp 39478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-psubsp 39485
This theorem is referenced by:  psubspi  39729  paddclN  39824
  Copyright terms: Public domain W3C validator