Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp2 Structured version   Visualization version   GIF version

Theorem ispsubsp2 39740
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟   𝐴,𝑝,𝑞
Allowed substitution hints:   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp2
StepHypRef Expression
1 psubspset.l . . 3 = (le‘𝐾)
2 psubspset.j . . 3 = (join‘𝐾)
3 psubspset.a . . 3 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 39739 . 2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋))))
6 ralcom 3265 . . . . . . 7 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋))
7 r19.23v 3161 . . . . . . . 8 (∀𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
87ralbii 3075 . . . . . . 7 (∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
96, 8bitri 275 . . . . . 6 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
109ralbii 3075 . . . . 5 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
11 ralcom 3265 . . . . . 6 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
12 r19.23v 3161 . . . . . . 7 (∀𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1312ralbii 3075 . . . . . 6 (∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1411, 13bitri 275 . . . . 5 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1510, 14bitri 275 . . . 4 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1615a1i 11 . . 3 (𝐾𝐷 → (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋)))
1716anbi2d 630 . 2 (𝐾𝐷 → ((𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋)) ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
185, 17bitrd 279 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  PSubSpcpsubsp 39490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-psubsp 39497
This theorem is referenced by:  psubspi  39741  paddclN  39836
  Copyright terms: Public domain W3C validator