Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp2 Structured version   Visualization version   GIF version

Theorem ispsubsp2 38065
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟   𝐴,𝑝,𝑞
Allowed substitution hints:   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp2
StepHypRef Expression
1 psubspset.l . . 3 = (le‘𝐾)
2 psubspset.j . . 3 = (join‘𝐾)
3 psubspset.a . . 3 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 38064 . 2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋))))
6 ralcom 3270 . . . . . . 7 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋))
7 r19.23v 3177 . . . . . . . 8 (∀𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
87ralbii 3094 . . . . . . 7 (∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
96, 8bitri 275 . . . . . 6 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
109ralbii 3094 . . . . 5 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
11 ralcom 3270 . . . . . 6 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
12 r19.23v 3177 . . . . . . 7 (∀𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1312ralbii 3094 . . . . . 6 (∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1411, 13bitri 275 . . . . 5 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1510, 14bitri 275 . . . 4 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1615a1i 11 . . 3 (𝐾𝐷 → (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋)))
1716anbi2d 630 . 2 (𝐾𝐷 → ((𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋)) ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
185, 17bitrd 279 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  wrex 3071  wss 3905   class class class wbr 5100  cfv 6488  (class class class)co 7346  lecple 17071  joincjn 18131  Atomscatm 37581  PSubSpcpsubsp 37815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-iota 6440  df-fun 6490  df-fv 6496  df-ov 7349  df-psubsp 37822
This theorem is referenced by:  psubspi  38066  paddclN  38161
  Copyright terms: Public domain W3C validator