Proof of Theorem ispsubsp2
| Step | Hyp | Ref
| Expression |
| 1 | | psubspset.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
| 2 | | psubspset.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
| 3 | | psubspset.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
| 4 | | psubspset.s |
. . 3
⊢ 𝑆 = (PSubSp‘𝐾) |
| 5 | 1, 2, 3, 4 | ispsubsp 39747 |
. 2
⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |
| 6 | | ralcom 3289 |
. . . . . . 7
⊢
(∀𝑟 ∈
𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ∀𝑟 ∈ 𝑋 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 7 | | r19.23v 3183 |
. . . . . . . 8
⊢
(∀𝑟 ∈
𝑋 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 8 | 7 | ralbii 3093 |
. . . . . . 7
⊢
(∀𝑝 ∈
𝐴 ∀𝑟 ∈ 𝑋 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 9 | 6, 8 | bitri 275 |
. . . . . 6
⊢
(∀𝑟 ∈
𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 10 | 9 | ralbii 3093 |
. . . . 5
⊢
(∀𝑞 ∈
𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑞 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 11 | | ralcom 3289 |
. . . . . 6
⊢
(∀𝑞 ∈
𝑋 ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝑋 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 12 | | r19.23v 3183 |
. . . . . . 7
⊢
(∀𝑞 ∈
𝑋 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 13 | 12 | ralbii 3093 |
. . . . . 6
⊢
(∀𝑝 ∈
𝐴 ∀𝑞 ∈ 𝑋 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 14 | 11, 13 | bitri 275 |
. . . . 5
⊢
(∀𝑞 ∈
𝑋 ∀𝑝 ∈ 𝐴 (∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 15 | 10, 14 | bitri 275 |
. . . 4
⊢
(∀𝑞 ∈
𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 16 | 15 | a1i 11 |
. . 3
⊢ (𝐾 ∈ 𝐷 → (∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋))) |
| 17 | 16 | anbi2d 630 |
. 2
⊢ (𝐾 ∈ 𝐷 → ((𝑋 ⊆ 𝐴 ∧ ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝑋 ∀𝑝 ∈ 𝐴 (𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |
| 18 | 5, 17 | bitrd 279 |
1
⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |