Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp2 Structured version   Visualization version   GIF version

Theorem ispsubsp2 39747
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟   𝐴,𝑝,𝑞
Allowed substitution hints:   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp2
StepHypRef Expression
1 psubspset.l . . 3 = (le‘𝐾)
2 psubspset.j . . 3 = (join‘𝐾)
3 psubspset.a . . 3 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 39746 . 2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋))))
6 ralcom 3266 . . . . . . 7 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋))
7 r19.23v 3162 . . . . . . . 8 (∀𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
87ralbii 3076 . . . . . . 7 (∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
96, 8bitri 275 . . . . . 6 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
109ralbii 3076 . . . . 5 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
11 ralcom 3266 . . . . . 6 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
12 r19.23v 3162 . . . . . . 7 (∀𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1312ralbii 3076 . . . . . 6 (∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1411, 13bitri 275 . . . . 5 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1510, 14bitri 275 . . . 4 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1615a1i 11 . . 3 (𝐾𝐷 → (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋)))
1716anbi2d 630 . 2 (𝐾𝐷 → ((𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋)) ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
185, 17bitrd 279 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  lecple 17234  joincjn 18279  Atomscatm 39263  PSubSpcpsubsp 39497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-psubsp 39504
This theorem is referenced by:  psubspi  39748  paddclN  39843
  Copyright terms: Public domain W3C validator