Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝐾 ∈ HL) |
2 | | eqid 2738 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
3 | | paddidm.s |
. . . . 5
⊢ 𝑆 = (PSubSp‘𝐾) |
4 | 2, 3 | psubssat 37695 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
5 | 4 | 3adant3 1130 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
6 | 2, 3 | psubssat 37695 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
7 | 6 | 3adant2 1129 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
8 | | paddidm.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
9 | 2, 8 | paddssat 37755 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) |
10 | 1, 5, 7, 9 | syl3anc 1369 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) |
11 | | olc 864 |
. . . . 5
⊢ ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(le‘𝐾) =
(le‘𝐾) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(join‘𝐾) =
(join‘𝐾) |
14 | 12, 13, 2, 8 | elpadd 37740 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))) |
15 | 1, 10, 10, 14 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))) |
16 | 2, 8 | padd4N 37781 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
17 | 1, 5, 7, 5, 7, 16 | syl122anc 1377 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
18 | 3, 8 | paddidm 37782 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) → (𝑋 + 𝑋) = 𝑋) |
19 | 18 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑋) = 𝑋) |
20 | 3, 8 | paddidm 37782 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆) → (𝑌 + 𝑌) = 𝑌) |
21 | 20 | 3adant2 1129 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑌 + 𝑌) = 𝑌) |
22 | 19, 21 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = (𝑋 + 𝑌)) |
23 | 17, 22 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
24 | 23 | eleq2d 2824 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ 𝑝 ∈ (𝑋 + 𝑌))) |
25 | 15, 24 | bitr3d 280 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ 𝑝 ∈ (𝑋 + 𝑌))) |
26 | 11, 25 | syl5ib 243 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝 ∈ (𝑋 + 𝑌))) |
27 | 26 | expd 415 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))) |
28 | 27 | ralrimiv 3106 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌))) |
29 | 12, 13, 2, 3 | ispsubsp2 37687 |
. . 3
⊢ (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝑆 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌))))) |
30 | 29 | 3ad2ant1 1131 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑋 + 𝑌) ∈ 𝑆 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌))))) |
31 | 10, 28, 30 | mpbir2and 709 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |