Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddclN Structured version   Visualization version   GIF version

Theorem paddclN 37783
Description: The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddidm.s 𝑆 = (PSubSp‘𝐾)
paddidm.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddclN ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem paddclN
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝐾 ∈ HL)
2 eqid 2738 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 paddidm.s . . . . 5 𝑆 = (PSubSp‘𝐾)
42, 3psubssat 37695 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
543adant3 1130 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
62, 3psubssat 37695 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
763adant2 1129 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
8 paddidm.p . . . 4 + = (+𝑃𝐾)
92, 8paddssat 37755 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
101, 5, 7, 9syl3anc 1369 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
11 olc 864 . . . . 5 ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
12 eqid 2738 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
13 eqid 2738 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
1412, 13, 2, 8elpadd 37740 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
151, 10, 10, 14syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ ((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
162, 8padd4N 37781 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
171, 5, 7, 5, 7, 16syl122anc 1377 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
183, 8paddidm 37782 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)
19183adant3 1130 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑋) = 𝑋)
203, 8paddidm 37782 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝑆) → (𝑌 + 𝑌) = 𝑌)
21203adant2 1129 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑌 + 𝑌) = 𝑌)
2219, 21oveq12d 7273 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = (𝑋 + 𝑌))
2317, 22eqtrd 2778 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + 𝑌))
2423eleq2d 2824 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ ((𝑋 + 𝑌) + (𝑋 + 𝑌)) ↔ 𝑝 ∈ (𝑋 + 𝑌)))
2515, 24bitr3d 280 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (((𝑝 ∈ (𝑋 + 𝑌) ∨ 𝑝 ∈ (𝑋 + 𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ 𝑝 ∈ (𝑋 + 𝑌)))
2611, 25syl5ib 243 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝 ∈ (𝑋 + 𝑌)))
2726expd 415 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌))))
2827ralrimiv 3106 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))
2912, 13, 2, 3ispsubsp2 37687 . . 3 (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝑆 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))))
30293ad2ant1 1131 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → ((𝑋 + 𝑌) ∈ 𝑆 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ (Atoms‘𝐾)(∃𝑞 ∈ (𝑋 + 𝑌)∃𝑟 ∈ (𝑋 + 𝑌)𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ (𝑋 + 𝑌)))))
3110, 28, 30mpbir2and 709 1 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  HLchlt 37291  PSubSpcpsubsp 37437  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-padd 37737
This theorem is referenced by:  pmodl42N  37792  pclun2N  37840
  Copyright terms: Public domain W3C validator