![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubspi | Structured version Visualization version GIF version |
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) |
Ref | Expression |
---|---|
psubspset.l | ⊢ ≤ = (le‘𝐾) |
psubspset.j | ⊢ ∨ = (join‘𝐾) |
psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
psubspi | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubspset.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
2 | psubspset.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
3 | psubspset.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | psubspset.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | 1, 2, 3, 4 | ispsubsp2 36364 | . . . . 5 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |
6 | 5 | simplbda 492 | . . . 4 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
7 | 6 | ex 405 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 → ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋))) |
8 | breq1 4928 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ≤ (𝑞 ∨ 𝑟) ↔ 𝑃 ≤ (𝑞 ∨ 𝑟))) | |
9 | 8 | 2rexbidv 3238 | . . . . 5 ⊢ (𝑝 = 𝑃 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) ↔ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟))) |
10 | eleq1 2846 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑋 ↔ 𝑃 ∈ 𝑋)) | |
11 | 9, 10 | imbi12d 337 | . . . 4 ⊢ (𝑝 = 𝑃 → ((∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋))) |
12 | 11 | rspccv 3525 | . . 3 ⊢ (∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) → (𝑃 ∈ 𝐴 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋))) |
13 | 7, 12 | syl6 35 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 → (𝑃 ∈ 𝐴 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋)))) |
14 | 13 | 3imp1 1328 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∀wral 3081 ∃wrex 3082 ⊆ wss 3822 class class class wbr 4925 ‘cfv 6185 (class class class)co 6974 lecple 16426 joincjn 17424 Atomscatm 35881 PSubSpcpsubsp 36114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-iota 6149 df-fun 6187 df-fv 6193 df-ov 6977 df-psubsp 36121 |
This theorem is referenced by: psubspi2N 36366 paddidm 36459 |
Copyright terms: Public domain | W3C validator |