Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi Structured version   Visualization version   GIF version

Theorem psubspi 39741
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspi (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
Distinct variable groups:   𝐴,𝑟,𝑞   𝐾,𝑞,𝑟   𝑋,𝑞,𝑟   𝐴,𝑞   𝑃,𝑞,𝑟
Allowed substitution hints:   𝐷(𝑟,𝑞)   𝑆(𝑟,𝑞)   (𝑟,𝑞)   (𝑟,𝑞)

Proof of Theorem psubspi
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . . . 6 = (le‘𝐾)
2 psubspset.j . . . . . 6 = (join‘𝐾)
3 psubspset.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp2 39740 . . . . 5 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
65simplbda 499 . . . 4 ((𝐾𝐷𝑋𝑆) → ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
76ex 412 . . 3 (𝐾𝐷 → (𝑋𝑆 → ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋)))
8 breq1 5110 . . . . . 6 (𝑝 = 𝑃 → (𝑝 (𝑞 𝑟) ↔ 𝑃 (𝑞 𝑟)))
982rexbidv 3202 . . . . 5 (𝑝 = 𝑃 → (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)))
10 eleq1 2816 . . . . 5 (𝑝 = 𝑃 → (𝑝𝑋𝑃𝑋))
119, 10imbi12d 344 . . . 4 (𝑝 = 𝑃 → ((∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋)))
1211rspccv 3585 . . 3 (∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) → (𝑃𝐴 → (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋)))
137, 12syl6 35 . 2 (𝐾𝐷 → (𝑋𝑆 → (𝑃𝐴 → (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋))))
14133imp1 1348 1 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  PSubSpcpsubsp 39490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-psubsp 39497
This theorem is referenced by:  psubspi2N  39742  paddidm  39835
  Copyright terms: Public domain W3C validator