Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi Structured version   Visualization version   GIF version

Theorem psubspi 39766
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspi (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
Distinct variable groups:   𝐴,𝑟,𝑞   𝐾,𝑞,𝑟   𝑋,𝑞,𝑟   𝐴,𝑞   𝑃,𝑞,𝑟
Allowed substitution hints:   𝐷(𝑟,𝑞)   𝑆(𝑟,𝑞)   (𝑟,𝑞)   (𝑟,𝑞)

Proof of Theorem psubspi
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . . . 6 = (le‘𝐾)
2 psubspset.j . . . . . 6 = (join‘𝐾)
3 psubspset.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp2 39765 . . . . 5 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
65simplbda 499 . . . 4 ((𝐾𝐷𝑋𝑆) → ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
76ex 412 . . 3 (𝐾𝐷 → (𝑋𝑆 → ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋)))
8 breq1 5122 . . . . . 6 (𝑝 = 𝑃 → (𝑝 (𝑞 𝑟) ↔ 𝑃 (𝑞 𝑟)))
982rexbidv 3206 . . . . 5 (𝑝 = 𝑃 → (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)))
10 eleq1 2822 . . . . 5 (𝑝 = 𝑃 → (𝑝𝑋𝑃𝑋))
119, 10imbi12d 344 . . . 4 (𝑝 = 𝑃 → ((∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋)))
1211rspccv 3598 . . 3 (∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) → (𝑃𝐴 → (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋)))
137, 12syl6 35 . 2 (𝐾𝐷 → (𝑋𝑆 → (𝑃𝐴 → (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋))))
14133imp1 1348 1 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  cfv 6531  (class class class)co 7405  lecple 17278  joincjn 18323  Atomscatm 39281  PSubSpcpsubsp 39515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-psubsp 39522
This theorem is referenced by:  psubspi2N  39767  paddidm  39860
  Copyright terms: Public domain W3C validator