| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubspi | Structured version Visualization version GIF version | ||
| Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) |
| Ref | Expression |
|---|---|
| psubspset.l | ⊢ ≤ = (le‘𝐾) |
| psubspset.j | ⊢ ∨ = (join‘𝐾) |
| psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| psubspi | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 2 | psubspset.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 3 | psubspset.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | psubspset.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | 1, 2, 3, 4 | ispsubsp2 39748 | . . . . 5 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |
| 6 | 5 | simplbda 499 | . . . 4 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
| 7 | 6 | ex 412 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 → ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋))) |
| 8 | breq1 5146 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ≤ (𝑞 ∨ 𝑟) ↔ 𝑃 ≤ (𝑞 ∨ 𝑟))) | |
| 9 | 8 | 2rexbidv 3222 | . . . . 5 ⊢ (𝑝 = 𝑃 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) ↔ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟))) |
| 10 | eleq1 2829 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑋 ↔ 𝑃 ∈ 𝑋)) | |
| 11 | 9, 10 | imbi12d 344 | . . . 4 ⊢ (𝑝 = 𝑃 → ((∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋))) |
| 12 | 11 | rspccv 3619 | . . 3 ⊢ (∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) → (𝑃 ∈ 𝐴 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋))) |
| 13 | 7, 12 | syl6 35 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 → (𝑃 ∈ 𝐴 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋)))) |
| 14 | 13 | 3imp1 1348 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 lecple 17304 joincjn 18357 Atomscatm 39264 PSubSpcpsubsp 39498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-psubsp 39505 |
| This theorem is referenced by: psubspi2N 39750 paddidm 39843 |
| Copyright terms: Public domain | W3C validator |