Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubspi | Structured version Visualization version GIF version |
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) |
Ref | Expression |
---|---|
psubspset.l | ⊢ ≤ = (le‘𝐾) |
psubspset.j | ⊢ ∨ = (join‘𝐾) |
psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
psubspi | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubspset.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
2 | psubspset.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
3 | psubspset.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | psubspset.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | 1, 2, 3, 4 | ispsubsp2 37497 | . . . . 5 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)))) |
6 | 5 | simplbda 503 | . . . 4 ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆) → ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋)) |
7 | 6 | ex 416 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 → ∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋))) |
8 | breq1 5056 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ≤ (𝑞 ∨ 𝑟) ↔ 𝑃 ≤ (𝑞 ∨ 𝑟))) | |
9 | 8 | 2rexbidv 3219 | . . . . 5 ⊢ (𝑝 = 𝑃 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) ↔ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟))) |
10 | eleq1 2825 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑋 ↔ 𝑃 ∈ 𝑋)) | |
11 | 9, 10 | imbi12d 348 | . . . 4 ⊢ (𝑝 = 𝑃 → ((∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) ↔ (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋))) |
12 | 11 | rspccv 3534 | . . 3 ⊢ (∀𝑝 ∈ 𝐴 (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝 ≤ (𝑞 ∨ 𝑟) → 𝑝 ∈ 𝑋) → (𝑃 ∈ 𝐴 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋))) |
13 | 7, 12 | syl6 35 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 → (𝑃 ∈ 𝐴 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟) → 𝑃 ∈ 𝑋)))) |
14 | 13 | 3imp1 1349 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 lecple 16809 joincjn 17818 Atomscatm 37014 PSubSpcpsubsp 37247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-psubsp 37254 |
This theorem is referenced by: psubspi2N 37499 paddidm 37592 |
Copyright terms: Public domain | W3C validator |