Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi Structured version   Visualization version   GIF version

Theorem psubspi 39856
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspi (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
Distinct variable groups:   𝐴,𝑟,𝑞   𝐾,𝑞,𝑟   𝑋,𝑞,𝑟   𝐴,𝑞   𝑃,𝑞,𝑟
Allowed substitution hints:   𝐷(𝑟,𝑞)   𝑆(𝑟,𝑞)   (𝑟,𝑞)   (𝑟,𝑞)

Proof of Theorem psubspi
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . . . 6 = (le‘𝐾)
2 psubspset.j . . . . . 6 = (join‘𝐾)
3 psubspset.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp2 39855 . . . . 5 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
65simplbda 499 . . . 4 ((𝐾𝐷𝑋𝑆) → ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
76ex 412 . . 3 (𝐾𝐷 → (𝑋𝑆 → ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋)))
8 breq1 5098 . . . . . 6 (𝑝 = 𝑃 → (𝑝 (𝑞 𝑟) ↔ 𝑃 (𝑞 𝑟)))
982rexbidv 3199 . . . . 5 (𝑝 = 𝑃 → (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)))
10 eleq1 2821 . . . . 5 (𝑝 = 𝑃 → (𝑝𝑋𝑃𝑋))
119, 10imbi12d 344 . . . 4 (𝑝 = 𝑃 → ((∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋)))
1211rspccv 3571 . . 3 (∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) → (𝑃𝐴 → (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋)))
137, 12syl6 35 . 2 (𝐾𝐷 → (𝑋𝑆 → (𝑃𝐴 → (∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟) → 𝑃𝑋))))
14133imp1 1348 1 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wrex 3058  wss 3899   class class class wbr 5095  cfv 6489  (class class class)co 7355  lecple 17178  joincjn 18227  Atomscatm 39372  PSubSpcpsubsp 39605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-psubsp 39612
This theorem is referenced by:  psubspi2N  39857  paddidm  39950
  Copyright terms: Public domain W3C validator