Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpv Structured version   Visualization version   GIF version

Theorem ixpv 48759
Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.)
Assertion
Ref Expression
ixpv X𝑥𝐴 V = {𝑓𝑓 Fn 𝐴}
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ixpv
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dffn2 6705 . . 3 (𝑔 Fn 𝐴𝑔:𝐴⟶V)
2 vex 3461 . . . 4 𝑔 ∈ V
3 fneq1 6626 . . . 4 (𝑓 = 𝑔 → (𝑓 Fn 𝐴𝑔 Fn 𝐴))
42, 3elab 3656 . . 3 (𝑔 ∈ {𝑓𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴)
52elixpconst 8914 . . 3 (𝑔X𝑥𝐴 V ↔ 𝑔:𝐴⟶V)
61, 4, 53bitr4ri 304 . 2 (𝑔X𝑥𝐴 V ↔ 𝑔 ∈ {𝑓𝑓 Fn 𝐴})
76eqriv 2731 1 X𝑥𝐴 V = {𝑓𝑓 Fn 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  {cab 2712  Vcvv 3457   Fn wfn 6523  wf 6524  Xcixp 8906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-fv 6536  df-ixp 8907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator