Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpv Structured version   Visualization version   GIF version

Theorem ixpv 48995
Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.)
Assertion
Ref Expression
ixpv X𝑥𝐴 V = {𝑓𝑓 Fn 𝐴}
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ixpv
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dffn2 6659 . . 3 (𝑔 Fn 𝐴𝑔:𝐴⟶V)
2 vex 3440 . . . 4 𝑔 ∈ V
3 fneq1 6578 . . . 4 (𝑓 = 𝑔 → (𝑓 Fn 𝐴𝑔 Fn 𝐴))
42, 3elab 3630 . . 3 (𝑔 ∈ {𝑓𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴)
52elixpconst 8835 . . 3 (𝑔X𝑥𝐴 V ↔ 𝑔:𝐴⟶V)
61, 4, 53bitr4ri 304 . 2 (𝑔X𝑥𝐴 V ↔ 𝑔 ∈ {𝑓𝑓 Fn 𝐴})
76eqriv 2728 1 X𝑥𝐴 V = {𝑓𝑓 Fn 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436   Fn wfn 6482  wf 6483  Xcixp 8827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ixp 8828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator