| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpv | Structured version Visualization version GIF version | ||
| Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| ixpv | ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 6705 | . . 3 ⊢ (𝑔 Fn 𝐴 ↔ 𝑔:𝐴⟶V) | |
| 2 | vex 3461 | . . . 4 ⊢ 𝑔 ∈ V | |
| 3 | fneq1 6626 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
| 4 | 2, 3 | elab 3656 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴) |
| 5 | 2 | elixpconst 8914 | . . 3 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔:𝐴⟶V) |
| 6 | 1, 4, 5 | 3bitr4ri 304 | . 2 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴}) |
| 7 | 6 | eqriv 2731 | 1 ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3457 Fn wfn 6523 ⟶wf 6524 Xcixp 8906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-fv 6536 df-ixp 8907 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |