| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpv | Structured version Visualization version GIF version | ||
| Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| ixpv | ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 6692 | . . 3 ⊢ (𝑔 Fn 𝐴 ↔ 𝑔:𝐴⟶V) | |
| 2 | vex 3454 | . . . 4 ⊢ 𝑔 ∈ V | |
| 3 | fneq1 6611 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
| 4 | 2, 3 | elab 3648 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴) |
| 5 | 2 | elixpconst 8880 | . . 3 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔:𝐴⟶V) |
| 6 | 1, 4, 5 | 3bitr4ri 304 | . 2 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴}) |
| 7 | 6 | eqriv 2727 | 1 ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 Fn wfn 6508 ⟶wf 6509 Xcixp 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ixp 8873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |