Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpv Structured version   Visualization version   GIF version

Theorem ixpv 48900
Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.)
Assertion
Ref Expression
ixpv X𝑥𝐴 V = {𝑓𝑓 Fn 𝐴}
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ixpv
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dffn2 6649 . . 3 (𝑔 Fn 𝐴𝑔:𝐴⟶V)
2 vex 3438 . . . 4 𝑔 ∈ V
3 fneq1 6568 . . . 4 (𝑓 = 𝑔 → (𝑓 Fn 𝐴𝑔 Fn 𝐴))
42, 3elab 3633 . . 3 (𝑔 ∈ {𝑓𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴)
52elixpconst 8824 . . 3 (𝑔X𝑥𝐴 V ↔ 𝑔:𝐴⟶V)
61, 4, 53bitr4ri 304 . 2 (𝑔X𝑥𝐴 V ↔ 𝑔 ∈ {𝑓𝑓 Fn 𝐴})
76eqriv 2727 1 X𝑥𝐴 V = {𝑓𝑓 Fn 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  {cab 2708  Vcvv 3434   Fn wfn 6472  wf 6473  Xcixp 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ixp 8817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator