| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpv | Structured version Visualization version GIF version | ||
| Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| ixpv | ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 6658 | . . 3 ⊢ (𝑔 Fn 𝐴 ↔ 𝑔:𝐴⟶V) | |
| 2 | vex 3442 | . . . 4 ⊢ 𝑔 ∈ V | |
| 3 | fneq1 6577 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
| 4 | 2, 3 | elab 3637 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴) |
| 5 | 2 | elixpconst 8839 | . . 3 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔:𝐴⟶V) |
| 6 | 1, 4, 5 | 3bitr4ri 304 | . 2 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴}) |
| 7 | 6 | eqriv 2726 | 1 ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 Fn wfn 6481 ⟶wf 6482 Xcixp 8831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ixp 8832 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |