Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpv Structured version   Visualization version   GIF version

Theorem ixpv 48862
Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.)
Assertion
Ref Expression
ixpv X𝑥𝐴 V = {𝑓𝑓 Fn 𝐴}
Distinct variable group:   𝐴,𝑓,𝑥

Proof of Theorem ixpv
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dffn2 6658 . . 3 (𝑔 Fn 𝐴𝑔:𝐴⟶V)
2 vex 3442 . . . 4 𝑔 ∈ V
3 fneq1 6577 . . . 4 (𝑓 = 𝑔 → (𝑓 Fn 𝐴𝑔 Fn 𝐴))
42, 3elab 3637 . . 3 (𝑔 ∈ {𝑓𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴)
52elixpconst 8839 . . 3 (𝑔X𝑥𝐴 V ↔ 𝑔:𝐴⟶V)
61, 4, 53bitr4ri 304 . 2 (𝑔X𝑥𝐴 V ↔ 𝑔 ∈ {𝑓𝑓 Fn 𝐴})
76eqriv 2726 1 X𝑥𝐴 V = {𝑓𝑓 Fn 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438   Fn wfn 6481  wf 6482  Xcixp 8831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ixp 8832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator