| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpv | Structured version Visualization version GIF version | ||
| Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| ixpv | ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 6659 | . . 3 ⊢ (𝑔 Fn 𝐴 ↔ 𝑔:𝐴⟶V) | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑔 ∈ V | |
| 3 | fneq1 6578 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
| 4 | 2, 3 | elab 3630 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴) |
| 5 | 2 | elixpconst 8835 | . . 3 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔:𝐴⟶V) |
| 6 | 1, 4, 5 | 3bitr4ri 304 | . 2 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴}) |
| 7 | 6 | eqriv 2728 | 1 ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 Fn wfn 6482 ⟶wf 6483 Xcixp 8827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ixp 8828 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |