| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpv | Structured version Visualization version GIF version | ||
| Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| ixpv | ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn2 6649 | . . 3 ⊢ (𝑔 Fn 𝐴 ↔ 𝑔:𝐴⟶V) | |
| 2 | vex 3438 | . . . 4 ⊢ 𝑔 ∈ V | |
| 3 | fneq1 6568 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
| 4 | 2, 3 | elab 3633 | . . 3 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴} ↔ 𝑔 Fn 𝐴) |
| 5 | 2 | elixpconst 8824 | . . 3 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔:𝐴⟶V) |
| 6 | 1, 4, 5 | 3bitr4ri 304 | . 2 ⊢ (𝑔 ∈ X𝑥 ∈ 𝐴 V ↔ 𝑔 ∈ {𝑓 ∣ 𝑓 Fn 𝐴}) |
| 7 | 6 | eqriv 2727 | 1 ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 {cab 2708 Vcvv 3434 Fn wfn 6472 ⟶wf 6473 Xcixp 8816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ixp 8817 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |