Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposideq2 Structured version   Visualization version   GIF version

Theorem tposideq2 48772
Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.)
Hypothesis
Ref Expression
tposideq2.1 𝑅 = (𝐴 × 𝐵)
Assertion
Ref Expression
tposideq2 (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥})
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem tposideq2
StepHypRef Expression
1 relxp 5683 . . 3 Rel (𝐴 × 𝐵)
2 tposideq2.1 . . . 4 𝑅 = (𝐴 × 𝐵)
32releqi 5767 . . 3 (Rel 𝑅 ↔ Rel (𝐴 × 𝐵))
41, 3mpbir 231 . 2 Rel 𝑅
5 tposideq 48771 . 2 (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
64, 5ax-mp 5 1 (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {csn 4606   cuni 4887  cmpt 5205   I cid 5557   × cxp 5663  ccnv 5664  cres 5667  Rel wrel 5670  tpos ctpos 8232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-1st 7996  df-2nd 7997  df-tpos 8233
This theorem is referenced by:  dfswapf2  49012
  Copyright terms: Public domain W3C validator