| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposideq2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposideq2.1 | ⊢ 𝑅 = (𝐴 × 𝐵) |
| Ref | Expression |
|---|---|
| tposideq2 | ⊢ (tpos I ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5637 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | tposideq2.1 | . . . 4 ⊢ 𝑅 = (𝐴 × 𝐵) | |
| 3 | 2 | releqi 5721 | . . 3 ⊢ (Rel 𝑅 ↔ Rel (𝐴 × 𝐵)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ Rel 𝑅 |
| 5 | tposideq 48872 | . 2 ⊢ (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥})) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (tpos I ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4577 ∪ cuni 4858 ↦ cmpt 5173 I cid 5513 × cxp 5617 ◡ccnv 5618 ↾ cres 5621 Rel wrel 5624 tpos ctpos 8158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-1st 7924 df-2nd 7925 df-tpos 8159 |
| This theorem is referenced by: dfswapf2 49246 |
| Copyright terms: Public domain | W3C validator |