| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposideq2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposideq2.1 | ⊢ 𝑅 = (𝐴 × 𝐵) |
| Ref | Expression |
|---|---|
| tposideq2 | ⊢ (tpos I ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5683 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | tposideq2.1 | . . . 4 ⊢ 𝑅 = (𝐴 × 𝐵) | |
| 3 | 2 | releqi 5767 | . . 3 ⊢ (Rel 𝑅 ↔ Rel (𝐴 × 𝐵)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ Rel 𝑅 |
| 5 | tposideq 48771 | . 2 ⊢ (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥})) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ (tpos I ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {csn 4606 ∪ cuni 4887 ↦ cmpt 5205 I cid 5557 × cxp 5663 ◡ccnv 5664 ↾ cres 5667 Rel wrel 5670 tpos ctpos 8232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-1st 7996 df-2nd 7997 df-tpos 8233 |
| This theorem is referenced by: dfswapf2 49012 |
| Copyright terms: Public domain | W3C validator |