![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspid | Structured version Visualization version GIF version |
Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspid.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspid | ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . . . 4 ⊢ ( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) | |
2 | ssid 4031 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) | |
3 | ssid 4031 | . . . 4 ⊢ (normCV‘𝑈) ⊆ (normCV‘𝑈) | |
4 | 1, 2, 3 | 3pm3.2i 1339 | . . 3 ⊢ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈)) |
5 | 4 | jctr 524 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ∧ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈)))) |
6 | eqid 2740 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
7 | eqid 2740 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
8 | eqid 2740 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
9 | sspid.h | . . 3 ⊢ 𝐻 = (SubSp‘𝑈) | |
10 | 6, 6, 7, 7, 8, 8, 9 | isssp 30756 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ NrmCVec ∧ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈))))) |
11 | 5, 10 | mpbird 257 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 NrmCVeccnv 30616 +𝑣 cpv 30617 ·𝑠OLD cns 30619 normCVcnmcv 30622 SubSpcss 30753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-oprab 7452 df-1st 8030 df-2nd 8031 df-vc 30591 df-nv 30624 df-va 30627 df-sm 30629 df-nmcv 30632 df-ssp 30754 |
This theorem is referenced by: hhsssh 31301 |
Copyright terms: Public domain | W3C validator |