MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspid Structured version   Visualization version   GIF version

Theorem sspid 30687
Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
sspid.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspid (𝑈 ∈ NrmCVec → 𝑈𝐻)

Proof of Theorem sspid
StepHypRef Expression
1 ssid 3960 . . . 4 ( +𝑣𝑈) ⊆ ( +𝑣𝑈)
2 ssid 3960 . . . 4 ( ·𝑠OLD𝑈) ⊆ ( ·𝑠OLD𝑈)
3 ssid 3960 . . . 4 (normCV𝑈) ⊆ (normCV𝑈)
41, 2, 33pm3.2i 1340 . . 3 (( +𝑣𝑈) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑈) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑈) ⊆ (normCV𝑈))
54jctr 524 . 2 (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ∧ (( +𝑣𝑈) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑈) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑈) ⊆ (normCV𝑈))))
6 eqid 2729 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
7 eqid 2729 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
8 eqid 2729 . . 3 (normCV𝑈) = (normCV𝑈)
9 sspid.h . . 3 𝐻 = (SubSp‘𝑈)
106, 6, 7, 7, 8, 8, 9isssp 30686 . 2 (𝑈 ∈ NrmCVec → (𝑈𝐻 ↔ (𝑈 ∈ NrmCVec ∧ (( +𝑣𝑈) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑈) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑈) ⊆ (normCV𝑈)))))
115, 10mpbird 257 1 (𝑈 ∈ NrmCVec → 𝑈𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905  cfv 6486  NrmCVeccnv 30546   +𝑣 cpv 30547   ·𝑠OLD cns 30549  normCVcnmcv 30552  SubSpcss 30683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-oprab 7357  df-1st 7931  df-2nd 7932  df-vc 30521  df-nv 30554  df-va 30557  df-sm 30559  df-nmcv 30562  df-ssp 30684
This theorem is referenced by:  hhsssh  31231
  Copyright terms: Public domain W3C validator