| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspid | Structured version Visualization version GIF version | ||
| Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspid.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspid | ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3957 | . . . 4 ⊢ ( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) | |
| 2 | ssid 3957 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) | |
| 3 | ssid 3957 | . . . 4 ⊢ (normCV‘𝑈) ⊆ (normCV‘𝑈) | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . . 3 ⊢ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈)) |
| 5 | 4 | jctr 524 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ∧ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈)))) |
| 6 | eqid 2731 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 7 | eqid 2731 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 8 | eqid 2731 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 9 | sspid.h | . . 3 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 10 | 6, 6, 7, 7, 8, 8, 9 | isssp 30699 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ NrmCVec ∧ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈))))) |
| 11 | 5, 10 | mpbird 257 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 NrmCVeccnv 30559 +𝑣 cpv 30560 ·𝑠OLD cns 30562 normCVcnmcv 30565 SubSpcss 30696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30534 df-nv 30567 df-va 30570 df-sm 30572 df-nmcv 30575 df-ssp 30697 |
| This theorem is referenced by: hhsssh 31244 |
| Copyright terms: Public domain | W3C validator |