MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspid Structured version   Visualization version   GIF version

Theorem sspid 30754
Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
sspid.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspid (𝑈 ∈ NrmCVec → 𝑈𝐻)

Proof of Theorem sspid
StepHypRef Expression
1 ssid 4018 . . . 4 ( +𝑣𝑈) ⊆ ( +𝑣𝑈)
2 ssid 4018 . . . 4 ( ·𝑠OLD𝑈) ⊆ ( ·𝑠OLD𝑈)
3 ssid 4018 . . . 4 (normCV𝑈) ⊆ (normCV𝑈)
41, 2, 33pm3.2i 1338 . . 3 (( +𝑣𝑈) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑈) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑈) ⊆ (normCV𝑈))
54jctr 524 . 2 (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ∧ (( +𝑣𝑈) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑈) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑈) ⊆ (normCV𝑈))))
6 eqid 2735 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
7 eqid 2735 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
8 eqid 2735 . . 3 (normCV𝑈) = (normCV𝑈)
9 sspid.h . . 3 𝐻 = (SubSp‘𝑈)
106, 6, 7, 7, 8, 8, 9isssp 30753 . 2 (𝑈 ∈ NrmCVec → (𝑈𝐻 ↔ (𝑈 ∈ NrmCVec ∧ (( +𝑣𝑈) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑈) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑈) ⊆ (normCV𝑈)))))
115, 10mpbird 257 1 (𝑈 ∈ NrmCVec → 𝑈𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  cfv 6563  NrmCVeccnv 30613   +𝑣 cpv 30614   ·𝑠OLD cns 30616  normCVcnmcv 30619  SubSpcss 30750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-oprab 7435  df-1st 8013  df-2nd 8014  df-vc 30588  df-nv 30621  df-va 30624  df-sm 30626  df-nmcv 30629  df-ssp 30751
This theorem is referenced by:  hhsssh  31298
  Copyright terms: Public domain W3C validator