| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspid | Structured version Visualization version GIF version | ||
| Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspid.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspid | ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 4005 | . . . 4 ⊢ ( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) | |
| 2 | ssid 4005 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) | |
| 3 | ssid 4005 | . . . 4 ⊢ (normCV‘𝑈) ⊆ (normCV‘𝑈) | |
| 4 | 1, 2, 3 | 3pm3.2i 1339 | . . 3 ⊢ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈)) |
| 5 | 4 | jctr 524 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ∧ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈)))) |
| 6 | eqid 2736 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 7 | eqid 2736 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 8 | eqid 2736 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 9 | sspid.h | . . 3 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 10 | 6, 6, 7, 7, 8, 8, 9 | isssp 30744 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ NrmCVec ∧ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈))))) |
| 11 | 5, 10 | mpbird 257 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ‘cfv 6560 NrmCVeccnv 30604 +𝑣 cpv 30605 ·𝑠OLD cns 30607 normCVcnmcv 30610 SubSpcss 30741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-fv 6568 df-oprab 7436 df-1st 8015 df-2nd 8016 df-vc 30579 df-nv 30612 df-va 30615 df-sm 30617 df-nmcv 30620 df-ssp 30742 |
| This theorem is referenced by: hhsssh 31289 |
| Copyright terms: Public domain | W3C validator |