| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspid | Structured version Visualization version GIF version | ||
| Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspid.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspid | ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . . . 4 ⊢ ( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) | |
| 2 | ssid 3969 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) | |
| 3 | ssid 3969 | . . . 4 ⊢ (normCV‘𝑈) ⊆ (normCV‘𝑈) | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . . 3 ⊢ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈)) |
| 5 | 4 | jctr 524 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ NrmCVec ∧ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈)))) |
| 6 | eqid 2729 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 7 | eqid 2729 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 8 | eqid 2729 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 9 | sspid.h | . . 3 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 10 | 6, 6, 7, 7, 8, 8, 9 | isssp 30653 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ NrmCVec ∧ (( +𝑣 ‘𝑈) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑈) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑈) ⊆ (normCV‘𝑈))))) |
| 11 | 5, 10 | mpbird 257 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑈 ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 NrmCVeccnv 30513 +𝑣 cpv 30514 ·𝑠OLD cns 30516 normCVcnmcv 30519 SubSpcss 30650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-oprab 7391 df-1st 7968 df-2nd 7969 df-vc 30488 df-nv 30521 df-va 30524 df-sm 30526 df-nmcv 30529 df-ssp 30651 |
| This theorem is referenced by: hhsssh 31198 |
| Copyright terms: Public domain | W3C validator |