![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaabslem | Structured version Visualization version GIF version |
Description: Lemma for oaabs 8649. (Contributed by NM, 9-Dec-2004.) |
Ref | Expression |
---|---|
oaabslem | ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7863 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | limom 7873 | . . . . . 6 ⊢ Lim ω | |
3 | 2 | jctr 525 | . . . . 5 ⊢ (ω ∈ On → (ω ∈ On ∧ Lim ω)) |
4 | oalim 8534 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 +o ω) = ∪ 𝑥 ∈ ω (𝐴 +o 𝑥)) | |
5 | 1, 3, 4 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) = ∪ 𝑥 ∈ ω (𝐴 +o 𝑥)) |
6 | ordom 7867 | . . . . . . . 8 ⊢ Ord ω | |
7 | nnacl 8613 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω) | |
8 | ordelss 6380 | . . . . . . . 8 ⊢ ((Ord ω ∧ (𝐴 +o 𝑥) ∈ ω) → (𝐴 +o 𝑥) ⊆ ω) | |
9 | 6, 7, 8 | sylancr 587 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ⊆ ω) |
10 | 9 | ralrimiva 3146 | . . . . . 6 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω) |
11 | iunss 5048 | . . . . . 6 ⊢ (∪ 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω) | |
12 | 10, 11 | sylibr 233 | . . . . 5 ⊢ (𝐴 ∈ ω → ∪ 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω) |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → ∪ 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω) |
14 | 5, 13 | eqsstrd 4020 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) ⊆ ω) |
15 | 14 | ancoms 459 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) ⊆ ω) |
16 | oaword2 8555 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ On) → ω ⊆ (𝐴 +o ω)) | |
17 | 1, 16 | sylan2 593 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → ω ⊆ (𝐴 +o ω)) |
18 | 15, 17 | eqssd 3999 | 1 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3948 ∪ ciun 4997 Ord word 6363 Oncon0 6364 Lim wlim 6365 (class class class)co 7411 ωcom 7857 +o coa 8465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-oadd 8472 |
This theorem is referenced by: oaabs 8649 oaabs2 8650 oancom 9648 1oaomeqom 42345 |
Copyright terms: Public domain | W3C validator |