![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaabslem | Structured version Visualization version GIF version |
Description: Lemma for oaabs 7990. (Contributed by NM, 9-Dec-2004.) |
Ref | Expression |
---|---|
oaabslem | ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7331 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | limom 7340 | . . . . . 6 ⊢ Lim ω | |
3 | 2 | jctr 522 | . . . . 5 ⊢ (ω ∈ On → (ω ∈ On ∧ Lim ω)) |
4 | oalim 7878 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 +o ω) = ∪ 𝑥 ∈ ω (𝐴 +o 𝑥)) | |
5 | 1, 3, 4 | syl2an 591 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) = ∪ 𝑥 ∈ ω (𝐴 +o 𝑥)) |
6 | ordom 7334 | . . . . . . . 8 ⊢ Ord ω | |
7 | nnacl 7957 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω) | |
8 | ordelss 5978 | . . . . . . . 8 ⊢ ((Ord ω ∧ (𝐴 +o 𝑥) ∈ ω) → (𝐴 +o 𝑥) ⊆ ω) | |
9 | 6, 7, 8 | sylancr 583 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ⊆ ω) |
10 | 9 | ralrimiva 3174 | . . . . . 6 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω) |
11 | iunss 4780 | . . . . . 6 ⊢ (∪ 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω) | |
12 | 10, 11 | sylibr 226 | . . . . 5 ⊢ (𝐴 ∈ ω → ∪ 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω) |
13 | 12 | adantr 474 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → ∪ 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω) |
14 | 5, 13 | eqsstrd 3863 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) ⊆ ω) |
15 | 14 | ancoms 452 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) ⊆ ω) |
16 | oaword2 7899 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ On) → ω ⊆ (𝐴 +o ω)) | |
17 | 1, 16 | sylan2 588 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → ω ⊆ (𝐴 +o ω)) |
18 | 15, 17 | eqssd 3843 | 1 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3116 ⊆ wss 3797 ∪ ciun 4739 Ord word 5961 Oncon0 5962 Lim wlim 5963 (class class class)co 6904 ωcom 7325 +o coa 7822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-oadd 7829 |
This theorem is referenced by: oaabs 7990 oaabs2 7991 oancom 8824 |
Copyright terms: Public domain | W3C validator |