MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabslem Structured version   Visualization version   GIF version

Theorem oaabslem 8562
Description: Lemma for oaabs 8563. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
oaabslem ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)

Proof of Theorem oaabslem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7802 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
2 limom 7812 . . . . . 6 Lim ω
32jctr 524 . . . . 5 (ω ∈ On → (ω ∈ On ∧ Lim ω))
4 oalim 8447 . . . . 5 ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 +o ω) = 𝑥 ∈ ω (𝐴 +o 𝑥))
51, 3, 4syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) = 𝑥 ∈ ω (𝐴 +o 𝑥))
6 ordom 7806 . . . . . . . 8 Ord ω
7 nnacl 8526 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
8 ordelss 6322 . . . . . . . 8 ((Ord ω ∧ (𝐴 +o 𝑥) ∈ ω) → (𝐴 +o 𝑥) ⊆ ω)
96, 7, 8sylancr 587 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ⊆ ω)
109ralrimiva 3124 . . . . . 6 (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
11 iunss 4994 . . . . . 6 ( 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
1210, 11sylibr 234 . . . . 5 (𝐴 ∈ ω → 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
1312adantr 480 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ On) → 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
145, 13eqsstrd 3969 . . 3 ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) ⊆ ω)
1514ancoms 458 . 2 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) ⊆ ω)
16 oaword2 8468 . . 3 ((ω ∈ On ∧ 𝐴 ∈ On) → ω ⊆ (𝐴 +o ω))
171, 16sylan2 593 . 2 ((ω ∈ On ∧ 𝐴 ∈ ω) → ω ⊆ (𝐴 +o ω))
1815, 17eqssd 3952 1 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3902   ciun 4941  Ord word 6305  Oncon0 6306  Lim wlim 6307  (class class class)co 7346  ωcom 7796   +o coa 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389
This theorem is referenced by:  oaabs  8563  oaabs2  8564  oancom  9541  1oaomeqom  43332
  Copyright terms: Public domain W3C validator