MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabslem Structured version   Visualization version   GIF version

Theorem oaabslem 8437
Description: Lemma for oaabs 8438. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
oaabslem ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)

Proof of Theorem oaabslem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7693 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
2 limom 7703 . . . . . 6 Lim ω
32jctr 524 . . . . 5 (ω ∈ On → (ω ∈ On ∧ Lim ω))
4 oalim 8324 . . . . 5 ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 +o ω) = 𝑥 ∈ ω (𝐴 +o 𝑥))
51, 3, 4syl2an 595 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) = 𝑥 ∈ ω (𝐴 +o 𝑥))
6 ordom 7697 . . . . . . . 8 Ord ω
7 nnacl 8404 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
8 ordelss 6267 . . . . . . . 8 ((Ord ω ∧ (𝐴 +o 𝑥) ∈ ω) → (𝐴 +o 𝑥) ⊆ ω)
96, 7, 8sylancr 586 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ⊆ ω)
109ralrimiva 3107 . . . . . 6 (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
11 iunss 4971 . . . . . 6 ( 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
1210, 11sylibr 233 . . . . 5 (𝐴 ∈ ω → 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
1312adantr 480 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ On) → 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
145, 13eqsstrd 3955 . . 3 ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) ⊆ ω)
1514ancoms 458 . 2 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) ⊆ ω)
16 oaword2 8346 . . 3 ((ω ∈ On ∧ 𝐴 ∈ On) → ω ⊆ (𝐴 +o ω))
171, 16sylan2 592 . 2 ((ω ∈ On ∧ 𝐴 ∈ ω) → ω ⊆ (𝐴 +o ω))
1815, 17eqssd 3934 1 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   ciun 4921  Ord word 6250  Oncon0 6251  Lim wlim 6252  (class class class)co 7255  ωcom 7687   +o coa 8264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271
This theorem is referenced by:  oaabs  8438  oaabs2  8439  oancom  9339
  Copyright terms: Public domain W3C validator