MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabslem Structured version   Visualization version   GIF version

Theorem oaabslem 8614
Description: Lemma for oaabs 8615. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
oaabslem ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)

Proof of Theorem oaabslem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7851 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
2 limom 7861 . . . . . 6 Lim ω
32jctr 524 . . . . 5 (ω ∈ On → (ω ∈ On ∧ Lim ω))
4 oalim 8499 . . . . 5 ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 +o ω) = 𝑥 ∈ ω (𝐴 +o 𝑥))
51, 3, 4syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) = 𝑥 ∈ ω (𝐴 +o 𝑥))
6 ordom 7855 . . . . . . . 8 Ord ω
7 nnacl 8578 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ∈ ω)
8 ordelss 6351 . . . . . . . 8 ((Ord ω ∧ (𝐴 +o 𝑥) ∈ ω) → (𝐴 +o 𝑥) ⊆ ω)
96, 7, 8sylancr 587 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o 𝑥) ⊆ ω)
109ralrimiva 3126 . . . . . 6 (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
11 iunss 5012 . . . . . 6 ( 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
1210, 11sylibr 234 . . . . 5 (𝐴 ∈ ω → 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
1312adantr 480 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ On) → 𝑥 ∈ ω (𝐴 +o 𝑥) ⊆ ω)
145, 13eqsstrd 3984 . . 3 ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 +o ω) ⊆ ω)
1514ancoms 458 . 2 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) ⊆ ω)
16 oaword2 8520 . . 3 ((ω ∈ On ∧ 𝐴 ∈ On) → ω ⊆ (𝐴 +o ω))
171, 16sylan2 593 . 2 ((ω ∈ On ∧ 𝐴 ∈ ω) → ω ⊆ (𝐴 +o ω))
1815, 17eqssd 3967 1 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917   ciun 4958  Ord word 6334  Oncon0 6335  Lim wlim 6336  (class class class)co 7390  ωcom 7845   +o coa 8434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  oaabs  8615  oaabs2  8616  oancom  9611  1oaomeqom  43289
  Copyright terms: Public domain W3C validator