MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbrf Structured version   Visualization version   GIF version

Theorem lmmbrf 25190
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 25187 presupposes that 𝐹 is a function. (Contributed by NM, 20-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmmbr3.5 𝑍 = (ℤ𝑀)
lmmbr3.6 (𝜑𝑀 ∈ ℤ)
lmmbrf.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
lmmbrf.8 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
lmmbrf (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑥,𝐽   𝑗,𝑀   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem lmmbrf
StepHypRef Expression
1 lmmbr.3 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 lmmbrf.8 . . . 4 (𝜑𝐹:𝑍𝑋)
3 elfvdm 6856 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
4 cnex 11087 . . . . . 6 ℂ ∈ V
53, 4jctir 520 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 lmmbr3.5 . . . . . . 7 𝑍 = (ℤ𝑀)
7 uzssz 12753 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
8 zsscn 12476 . . . . . . . 8 ℤ ⊆ ℂ
97, 8sstri 3944 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
106, 9eqsstri 3981 . . . . . 6 𝑍 ⊆ ℂ
1110jctr 524 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
12 elpm2r 8769 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
135, 11, 12syl2an 596 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
141, 2, 13syl2anc 584 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 532 . 2 (𝜑 → ((𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))))
166uztrn2 12751 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
1716adantll 714 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 lmmbrf.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1918oveq1d 7361 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝐹𝑘)𝐷𝑃) = (𝐴𝐷𝑃))
2019breq1d 5101 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥))
2120adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥))
222fdmd 6661 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
2322eleq2d 2817 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ dom 𝐹𝑘𝑍))
2423biimpar 477 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
252ffvelcdmda 7017 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
2624, 25jca 511 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
2726biantrurd 532 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
28 df-3an 1088 . . . . . . . . . . 11 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))
2927, 28bitr4di 289 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3029adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3121, 30bitr3d 281 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3231anassrs 467 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3317, 32syldan 591 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3433ralbidva 3153 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3534rexbidva 3154 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3635ralbidv 3155 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3736anbi2d 630 . 2 (𝜑 → ((𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥) ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
38 lmmbr.2 . . . 4 𝐽 = (MetOpen‘𝐷)
39 lmmbr3.6 . . . 4 (𝜑𝑀 ∈ ℤ)
4038, 1, 6, 39lmmbr3 25188 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
41 3anass 1094 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
4240, 41bitrdi 287 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))))
4315, 37, 423bitr4rd 312 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902   class class class wbr 5091  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  pm cpm 8751  cc 11004   < clt 11146  cz 12468  cuz 12732  +crp 12890  ∞Metcxmet 21277  MetOpencmopn 21282  𝑡clm 23142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-topgen 17347  df-psmet 21284  df-xmet 21285  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-bases 22862  df-lm 23145
This theorem is referenced by:  lmnn  25191  h2hlm  30958  lmclim2  37804  heibor1lem  37855  rrncmslem  37878
  Copyright terms: Public domain W3C validator