MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbrf Structured version   Visualization version   GIF version

Theorem lmmbrf 24708
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 24705 presupposes that 𝐹 is a function. (Contributed by NM, 20-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmmbr3.5 𝑍 = (ℤ𝑀)
lmmbr3.6 (𝜑𝑀 ∈ ℤ)
lmmbrf.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
lmmbrf.8 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
lmmbrf (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑥,𝐽   𝑗,𝑀   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem lmmbrf
StepHypRef Expression
1 lmmbr.3 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 lmmbrf.8 . . . 4 (𝜑𝐹:𝑍𝑋)
3 elfvdm 6915 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
4 cnex 11173 . . . . . 6 ℂ ∈ V
53, 4jctir 521 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 lmmbr3.5 . . . . . . 7 𝑍 = (ℤ𝑀)
7 uzssz 12825 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
8 zsscn 12548 . . . . . . . 8 ℤ ⊆ ℂ
97, 8sstri 3987 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
106, 9eqsstri 4012 . . . . . 6 𝑍 ⊆ ℂ
1110jctr 525 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
12 elpm2r 8822 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
135, 11, 12syl2an 596 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
141, 2, 13syl2anc 584 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 533 . 2 (𝜑 → ((𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))))
166uztrn2 12823 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
1716adantll 712 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 lmmbrf.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1918oveq1d 7408 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝐹𝑘)𝐷𝑃) = (𝐴𝐷𝑃))
2019breq1d 5151 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥))
2120adantrl 714 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥))
222fdmd 6715 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
2322eleq2d 2818 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ dom 𝐹𝑘𝑍))
2423biimpar 478 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
252ffvelcdmda 7071 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
2624, 25jca 512 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
2726biantrurd 533 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
28 df-3an 1089 . . . . . . . . . . 11 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))
2927, 28bitr4di 288 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3029adantrl 714 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3121, 30bitr3d 280 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3231anassrs 468 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3317, 32syldan 591 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3433ralbidva 3174 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3534rexbidva 3175 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3635ralbidv 3176 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3736anbi2d 629 . 2 (𝜑 → ((𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥) ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
38 lmmbr.2 . . . 4 𝐽 = (MetOpen‘𝐷)
39 lmmbr3.6 . . . 4 (𝜑𝑀 ∈ ℤ)
4038, 1, 6, 39lmmbr3 24706 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
41 3anass 1095 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
4240, 41bitrdi 286 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))))
4315, 37, 423bitr4rd 311 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  wrex 3069  Vcvv 3473  wss 3944   class class class wbr 5141  dom cdm 5669  wf 6528  cfv 6532  (class class class)co 7393  pm cpm 8804  cc 11090   < clt 11230  cz 12540  cuz 12804  +crp 12956  ∞Metcxmet 20863  MetOpencmopn 20868  𝑡clm 22659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-n0 12455  df-z 12541  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-topgen 17371  df-psmet 20870  df-xmet 20871  df-bl 20873  df-mopn 20874  df-top 22325  df-topon 22342  df-bases 22378  df-lm 22662
This theorem is referenced by:  lmnn  24709  h2hlm  30096  lmclim2  36429  heibor1lem  36480  rrncmslem  36503
  Copyright terms: Public domain W3C validator