MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbrf Structured version   Visualization version   GIF version

Theorem lmmbrf 25296
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 25293 presupposes that 𝐹 is a function. (Contributed by NM, 20-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmmbr3.5 𝑍 = (ℤ𝑀)
lmmbr3.6 (𝜑𝑀 ∈ ℤ)
lmmbrf.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
lmmbrf.8 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
lmmbrf (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑥,𝐽   𝑗,𝑀   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem lmmbrf
StepHypRef Expression
1 lmmbr.3 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 lmmbrf.8 . . . 4 (𝜑𝐹:𝑍𝑋)
3 elfvdm 6943 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
4 cnex 11236 . . . . . 6 ℂ ∈ V
53, 4jctir 520 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 lmmbr3.5 . . . . . . 7 𝑍 = (ℤ𝑀)
7 uzssz 12899 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
8 zsscn 12621 . . . . . . . 8 ℤ ⊆ ℂ
97, 8sstri 3993 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
106, 9eqsstri 4030 . . . . . 6 𝑍 ⊆ ℂ
1110jctr 524 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
12 elpm2r 8885 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
135, 11, 12syl2an 596 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
141, 2, 13syl2anc 584 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 532 . 2 (𝜑 → ((𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))))
166uztrn2 12897 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
1716adantll 714 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 lmmbrf.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1918oveq1d 7446 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝐹𝑘)𝐷𝑃) = (𝐴𝐷𝑃))
2019breq1d 5153 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥))
2120adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥))
222fdmd 6746 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
2322eleq2d 2827 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ dom 𝐹𝑘𝑍))
2423biimpar 477 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
252ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
2624, 25jca 511 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
2726biantrurd 532 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
28 df-3an 1089 . . . . . . . . . . 11 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))
2927, 28bitr4di 289 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3029adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3121, 30bitr3d 281 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3231anassrs 467 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3317, 32syldan 591 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3433ralbidva 3176 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3534rexbidva 3177 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3635ralbidv 3178 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3736anbi2d 630 . 2 (𝜑 → ((𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥) ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
38 lmmbr.2 . . . 4 𝐽 = (MetOpen‘𝐷)
39 lmmbr3.6 . . . 4 (𝜑𝑀 ∈ ℤ)
4038, 1, 6, 39lmmbr3 25294 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
41 3anass 1095 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
4240, 41bitrdi 287 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))))
4315, 37, 423bitr4rd 312 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951   class class class wbr 5143  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  pm cpm 8867  cc 11153   < clt 11295  cz 12613  cuz 12878  +crp 13034  ∞Metcxmet 21349  MetOpencmopn 21354  𝑡clm 23234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-lm 23237
This theorem is referenced by:  lmnn  25297  h2hlm  30999  lmclim2  37765  heibor1lem  37816  rrncmslem  37839
  Copyright terms: Public domain W3C validator