MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbrf Structured version   Visualization version   GIF version

Theorem lmmbrf 25178
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 25175 presupposes that 𝐹 is a function. (Contributed by NM, 20-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmmbr3.5 𝑍 = (ℤ𝑀)
lmmbr3.6 (𝜑𝑀 ∈ ℤ)
lmmbrf.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
lmmbrf.8 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
lmmbrf (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑥,𝐽   𝑗,𝑀   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem lmmbrf
StepHypRef Expression
1 lmmbr.3 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 lmmbrf.8 . . . 4 (𝜑𝐹:𝑍𝑋)
3 elfvdm 6861 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
4 cnex 11109 . . . . . 6 ℂ ∈ V
53, 4jctir 520 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 lmmbr3.5 . . . . . . 7 𝑍 = (ℤ𝑀)
7 uzssz 12774 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
8 zsscn 12497 . . . . . . . 8 ℤ ⊆ ℂ
97, 8sstri 3947 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
106, 9eqsstri 3984 . . . . . 6 𝑍 ⊆ ℂ
1110jctr 524 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
12 elpm2r 8779 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
135, 11, 12syl2an 596 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
141, 2, 13syl2anc 584 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 532 . 2 (𝜑 → ((𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))))
166uztrn2 12772 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
1716adantll 714 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 lmmbrf.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1918oveq1d 7368 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝐹𝑘)𝐷𝑃) = (𝐴𝐷𝑃))
2019breq1d 5105 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥))
2120adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥))
222fdmd 6666 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
2322eleq2d 2814 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ dom 𝐹𝑘𝑍))
2423biimpar 477 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
252ffvelcdmda 7022 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
2624, 25jca 511 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
2726biantrurd 532 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
28 df-3an 1088 . . . . . . . . . . 11 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))
2927, 28bitr4di 289 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3029adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3121, 30bitr3d 281 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘𝑍)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3231anassrs 467 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3317, 32syldan 591 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3433ralbidva 3150 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3534rexbidva 3151 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3635ralbidv 3152 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
3736anbi2d 630 . 2 (𝜑 → ((𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥) ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
38 lmmbr.2 . . . 4 𝐽 = (MetOpen‘𝐷)
39 lmmbr3.6 . . . 4 (𝜑𝑀 ∈ ℤ)
4038, 1, 6, 39lmmbr3 25176 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
41 3anass 1094 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
4240, 41bitrdi 287 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))))
4315, 37, 423bitr4rd 312 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝐷𝑃) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  pm cpm 8761  cc 11026   < clt 11168  cz 12489  cuz 12753  +crp 12911  ∞Metcxmet 21264  MetOpencmopn 21269  𝑡clm 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-lm 23132
This theorem is referenced by:  lmnn  25179  h2hlm  30942  lmclim2  37740  heibor1lem  37791  rrncmslem  37814
  Copyright terms: Public domain W3C validator