![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restn0 | Structured version Visualization version GIF version |
Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restn0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4236 | . . . 4 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
2 | vex 3443 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
3 | 2 | inex1 5119 | . . . . . . . . . 10 ⊢ (𝑦 ∩ 𝐴) ∈ V |
4 | 3 | isseti 3454 | . . . . . . . . 9 ⊢ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) |
5 | 4 | jctr 525 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
6 | 5 | eximi 1820 | . . . . . . 7 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
7 | df-rex 3113 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) | |
8 | 6, 7 | sylibr 235 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴)) |
9 | rexcom4 3215 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) | |
10 | 8, 9 | sylib 219 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
12 | 1, 11 | syl5bi 243 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
13 | elrest 16534 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) | |
14 | 13 | biimprd 249 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ∈ (𝑋 ↾t 𝐴))) |
15 | 14 | eximdv 1899 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
16 | 12, 15 | syld 47 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
17 | n0 4236 | . 2 ⊢ ((𝑋 ↾t 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴)) | |
18 | 16, 17 | syl6ibr 253 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∃wex 1765 ∈ wcel 2083 ≠ wne 2986 ∃wrex 3108 ∩ cin 3864 ∅c0 4217 (class class class)co 7023 ↾t crest 16527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-ov 7026 df-oprab 7027 df-mpo 7028 df-rest 16529 |
This theorem is referenced by: bj-restn0b 34002 |
Copyright terms: Public domain | W3C validator |