| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restn0 | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restn0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4319 | . . . 4 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
| 2 | vex 3454 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 3 | 2 | inex1 5275 | . . . . . . . . . 10 ⊢ (𝑦 ∩ 𝐴) ∈ V |
| 4 | 3 | isseti 3468 | . . . . . . . . 9 ⊢ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) |
| 5 | 4 | jctr 524 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
| 6 | 5 | eximi 1835 | . . . . . . 7 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
| 7 | df-rex 3055 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) | |
| 8 | 6, 7 | sylibr 234 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴)) |
| 9 | rexcom4 3265 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
| 12 | 1, 11 | biimtrid 242 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
| 13 | elrest 17397 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) | |
| 14 | 13 | biimprd 248 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 15 | 14 | eximdv 1917 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 16 | 12, 15 | syld 47 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 17 | n0 4319 | . 2 ⊢ ((𝑋 ↾t 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴)) | |
| 18 | 16, 17 | imbitrrdi 252 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ∩ cin 3916 ∅c0 4299 (class class class)co 7390 ↾t crest 17390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-rest 17392 |
| This theorem is referenced by: bj-restn0b 37086 |
| Copyright terms: Public domain | W3C validator |