| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restn0 | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restn0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4302 | . . . 4 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
| 2 | vex 3441 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 3 | 2 | inex1 5259 | . . . . . . . . . 10 ⊢ (𝑦 ∩ 𝐴) ∈ V |
| 4 | 3 | isseti 3455 | . . . . . . . . 9 ⊢ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) |
| 5 | 4 | jctr 524 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
| 6 | 5 | eximi 1836 | . . . . . . 7 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
| 7 | df-rex 3058 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) | |
| 8 | 6, 7 | sylibr 234 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴)) |
| 9 | rexcom4 3260 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
| 12 | 1, 11 | biimtrid 242 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
| 13 | elrest 17338 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) | |
| 14 | 13 | biimprd 248 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 15 | 14 | eximdv 1918 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 16 | 12, 15 | syld 47 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 17 | n0 4302 | . 2 ⊢ ((𝑋 ↾t 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴)) | |
| 18 | 16, 17 | imbitrrdi 252 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ∩ cin 3897 ∅c0 4282 (class class class)co 7355 ↾t crest 17331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-rest 17333 |
| This theorem is referenced by: bj-restn0b 37208 |
| Copyright terms: Public domain | W3C validator |