Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restn0 Structured version   Visualization version   GIF version

Theorem bj-restn0 37078
Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restn0 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → (𝑋t 𝐴) ≠ ∅))

Proof of Theorem bj-restn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4316 . . . 4 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
2 vex 3451 . . . . . . . . . . 11 𝑦 ∈ V
32inex1 5272 . . . . . . . . . 10 (𝑦𝐴) ∈ V
43isseti 3465 . . . . . . . . 9 𝑥 𝑥 = (𝑦𝐴)
54jctr 524 . . . . . . . 8 (𝑦𝑋 → (𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
65eximi 1835 . . . . . . 7 (∃𝑦 𝑦𝑋 → ∃𝑦(𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
7 df-rex 3054 . . . . . . 7 (∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴) ↔ ∃𝑦(𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
86, 7sylibr 234 . . . . . 6 (∃𝑦 𝑦𝑋 → ∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴))
9 rexcom4 3264 . . . . . 6 (∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴) ↔ ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴))
108, 9sylib 218 . . . . 5 (∃𝑦 𝑦𝑋 → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴))
1110a1i 11 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦 𝑦𝑋 → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴)))
121, 11biimtrid 242 . . 3 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴)))
13 elrest 17390 . . . . 5 ((𝑋𝑉𝐴𝑊) → (𝑥 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝑥 = (𝑦𝐴)))
1413biimprd 248 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦𝑋 𝑥 = (𝑦𝐴) → 𝑥 ∈ (𝑋t 𝐴)))
1514eximdv 1917 . . 3 ((𝑋𝑉𝐴𝑊) → (∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴) → ∃𝑥 𝑥 ∈ (𝑋t 𝐴)))
1612, 15syld 47 . 2 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → ∃𝑥 𝑥 ∈ (𝑋t 𝐴)))
17 n0 4316 . 2 ((𝑋t 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑋t 𝐴))
1816, 17imbitrrdi 252 1 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → (𝑋t 𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  cin 3913  c0 4296  (class class class)co 7387  t crest 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385
This theorem is referenced by:  bj-restn0b  37079
  Copyright terms: Public domain W3C validator