Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restn0 Structured version   Visualization version   GIF version

Theorem bj-restn0 34506
Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restn0 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → (𝑋t 𝐴) ≠ ∅))

Proof of Theorem bj-restn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4263 . . . 4 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
2 vex 3447 . . . . . . . . . . 11 𝑦 ∈ V
32inex1 5188 . . . . . . . . . 10 (𝑦𝐴) ∈ V
43isseti 3458 . . . . . . . . 9 𝑥 𝑥 = (𝑦𝐴)
54jctr 528 . . . . . . . 8 (𝑦𝑋 → (𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
65eximi 1836 . . . . . . 7 (∃𝑦 𝑦𝑋 → ∃𝑦(𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
7 df-rex 3115 . . . . . . 7 (∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴) ↔ ∃𝑦(𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
86, 7sylibr 237 . . . . . 6 (∃𝑦 𝑦𝑋 → ∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴))
9 rexcom4 3215 . . . . . 6 (∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴) ↔ ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴))
108, 9sylib 221 . . . . 5 (∃𝑦 𝑦𝑋 → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴))
1110a1i 11 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦 𝑦𝑋 → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴)))
121, 11syl5bi 245 . . 3 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴)))
13 elrest 16697 . . . . 5 ((𝑋𝑉𝐴𝑊) → (𝑥 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝑥 = (𝑦𝐴)))
1413biimprd 251 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦𝑋 𝑥 = (𝑦𝐴) → 𝑥 ∈ (𝑋t 𝐴)))
1514eximdv 1918 . . 3 ((𝑋𝑉𝐴𝑊) → (∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴) → ∃𝑥 𝑥 ∈ (𝑋t 𝐴)))
1612, 15syld 47 . 2 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → ∃𝑥 𝑥 ∈ (𝑋t 𝐴)))
17 n0 4263 . 2 ((𝑋t 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑋t 𝐴))
1816, 17syl6ibr 255 1 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → (𝑋t 𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2112  wne 2990  wrex 3110  cin 3883  c0 4246  (class class class)co 7139  t crest 16690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-rest 16692
This theorem is referenced by:  bj-restn0b  34507
  Copyright terms: Public domain W3C validator