![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restn0 | Structured version Visualization version GIF version |
Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restn0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4338 | . . . 4 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
2 | vex 3470 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
3 | 2 | inex1 5307 | . . . . . . . . . 10 ⊢ (𝑦 ∩ 𝐴) ∈ V |
4 | 3 | isseti 3482 | . . . . . . . . 9 ⊢ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) |
5 | 4 | jctr 524 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
6 | 5 | eximi 1829 | . . . . . . 7 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
7 | df-rex 3063 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) | |
8 | 6, 7 | sylibr 233 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴)) |
9 | rexcom4 3277 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) | |
10 | 8, 9 | sylib 217 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
12 | 1, 11 | biimtrid 241 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
13 | elrest 17371 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) | |
14 | 13 | biimprd 247 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ∈ (𝑋 ↾t 𝐴))) |
15 | 14 | eximdv 1912 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
16 | 12, 15 | syld 47 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
17 | n0 4338 | . 2 ⊢ ((𝑋 ↾t 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴)) | |
18 | 16, 17 | imbitrrdi 251 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 ∩ cin 3939 ∅c0 4314 (class class class)co 7401 ↾t crest 17364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-rest 17366 |
This theorem is referenced by: bj-restn0b 36428 |
Copyright terms: Public domain | W3C validator |