| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restn0 | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restn0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4306 | . . . 4 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
| 2 | vex 3442 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 3 | 2 | inex1 5259 | . . . . . . . . . 10 ⊢ (𝑦 ∩ 𝐴) ∈ V |
| 4 | 3 | isseti 3456 | . . . . . . . . 9 ⊢ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) |
| 5 | 4 | jctr 524 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
| 6 | 5 | eximi 1835 | . . . . . . 7 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) |
| 7 | df-rex 3054 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ ∃𝑥 𝑥 = (𝑦 ∩ 𝐴))) | |
| 8 | 6, 7 | sylibr 234 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴)) |
| 9 | rexcom4 3256 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 ∃𝑥 𝑥 = (𝑦 ∩ 𝐴) ↔ ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴)) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
| 12 | 1, 11 | biimtrid 242 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) |
| 13 | elrest 17349 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑥 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴))) | |
| 14 | 13 | biimprd 248 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 15 | 14 | eximdv 1917 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∃𝑥∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 16 | 12, 15 | syld 47 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴))) |
| 17 | n0 4306 | . 2 ⊢ ((𝑋 ↾t 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑋 ↾t 𝐴)) | |
| 18 | 16, 17 | imbitrrdi 252 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∩ cin 3904 ∅c0 4286 (class class class)co 7353 ↾t crest 17342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rest 17344 |
| This theorem is referenced by: bj-restn0b 37067 |
| Copyright terms: Public domain | W3C validator |