| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omabslem | Structured version Visualization version GIF version | ||
| Description: Lemma for omabs 8572. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| omabslem | ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7808 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | limom 7818 | . . . . . . 7 ⊢ Lim ω | |
| 3 | 2 | jctr 524 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ On ∧ Lim ω)) |
| 4 | omlim 8454 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) | |
| 5 | 1, 3, 4 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) |
| 6 | ordom 7812 | . . . . . . . . 9 ⊢ Ord ω | |
| 7 | nnmcl 8533 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ∈ ω) | |
| 8 | ordelss 6327 | . . . . . . . . 9 ⊢ ((Ord ω ∧ (𝐴 ·o 𝑥) ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) |
| 10 | 9 | ralrimiva 3125 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 11 | iunss 4995 | . . . . . . 7 ⊢ (∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) | |
| 12 | 10, 11 | sylibr 234 | . . . . . 6 ⊢ (𝐴 ∈ ω → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 14 | 5, 13 | eqsstrd 3965 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) ⊆ ω) |
| 15 | 14 | ancoms 458 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 ·o ω) ⊆ ω) |
| 16 | 15 | 3adant3 1132 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) ⊆ ω) |
| 17 | omword2 8495 | . . . 4 ⊢ (((ω ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) | |
| 18 | 17 | 3impa 1109 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
| 19 | 1, 18 | syl3an2 1164 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
| 20 | 16, 19 | eqssd 3948 | 1 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ∅c0 4282 ∪ ciun 4941 Ord word 6310 Oncon0 6311 Lim wlim 6312 (class class class)co 7352 ωcom 7802 ·o comu 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 |
| This theorem is referenced by: omabs 8572 2omomeqom 43421 omnord1ex 43422 |
| Copyright terms: Public domain | W3C validator |