![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omabslem | Structured version Visualization version GIF version |
Description: Lemma for omabs 8688. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
omabslem | ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7893 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | limom 7903 | . . . . . . 7 ⊢ Lim ω | |
3 | 2 | jctr 524 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ On ∧ Lim ω)) |
4 | omlim 8570 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) | |
5 | 1, 3, 4 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) |
6 | ordom 7897 | . . . . . . . . 9 ⊢ Ord ω | |
7 | nnmcl 8649 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ∈ ω) | |
8 | ordelss 6402 | . . . . . . . . 9 ⊢ ((Ord ω ∧ (𝐴 ·o 𝑥) ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) | |
9 | 6, 7, 8 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) |
10 | 9 | ralrimiva 3144 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
11 | iunss 5050 | . . . . . . 7 ⊢ (∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) | |
12 | 10, 11 | sylibr 234 | . . . . . 6 ⊢ (𝐴 ∈ ω → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
14 | 5, 13 | eqsstrd 4034 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) ⊆ ω) |
15 | 14 | ancoms 458 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 ·o ω) ⊆ ω) |
16 | 15 | 3adant3 1131 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) ⊆ ω) |
17 | omword2 8611 | . . . 4 ⊢ (((ω ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) | |
18 | 17 | 3impa 1109 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
19 | 1, 18 | syl3an2 1163 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
20 | 16, 19 | eqssd 4013 | 1 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 ∪ ciun 4996 Ord word 6385 Oncon0 6386 Lim wlim 6387 (class class class)co 7431 ωcom 7887 ·o comu 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 |
This theorem is referenced by: omabs 8688 2omomeqom 43293 omnord1ex 43294 |
Copyright terms: Public domain | W3C validator |