Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omabslem | Structured version Visualization version GIF version |
Description: Lemma for omabs 8473. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
omabslem | ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7713 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | limom 7723 | . . . . . . 7 ⊢ Lim ω | |
3 | 2 | jctr 525 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ On ∧ Lim ω)) |
4 | omlim 8355 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) | |
5 | 1, 3, 4 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) |
6 | ordom 7717 | . . . . . . . . 9 ⊢ Ord ω | |
7 | nnmcl 8435 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ∈ ω) | |
8 | ordelss 6281 | . . . . . . . . 9 ⊢ ((Ord ω ∧ (𝐴 ·o 𝑥) ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) | |
9 | 6, 7, 8 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) |
10 | 9 | ralrimiva 3110 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
11 | iunss 4980 | . . . . . . 7 ⊢ (∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) | |
12 | 10, 11 | sylibr 233 | . . . . . 6 ⊢ (𝐴 ∈ ω → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
14 | 5, 13 | eqsstrd 3964 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) ⊆ ω) |
15 | 14 | ancoms 459 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 ·o ω) ⊆ ω) |
16 | 15 | 3adant3 1131 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) ⊆ ω) |
17 | omword2 8397 | . . . 4 ⊢ (((ω ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) | |
18 | 17 | 3impa 1109 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
19 | 1, 18 | syl3an2 1163 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
20 | 16, 19 | eqssd 3943 | 1 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 ∅c0 4262 ∪ ciun 4930 Ord word 6264 Oncon0 6265 Lim wlim 6266 (class class class)co 7272 ωcom 7707 ·o comu 8287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-oadd 8293 df-omul 8294 |
This theorem is referenced by: omabs 8473 |
Copyright terms: Public domain | W3C validator |