MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabslem Structured version   Visualization version   GIF version

Theorem omabslem 8662
Description: Lemma for omabs 8663. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabslem ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω)

Proof of Theorem omabslem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnon 7867 . . . . . 6 (𝐴 ∈ ω → 𝐴 ∈ On)
2 limom 7877 . . . . . . 7 Lim ω
32jctr 524 . . . . . 6 (ω ∈ On → (ω ∈ On ∧ Lim ω))
4 omlim 8545 . . . . . 6 ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
51, 3, 4syl2an 596 . . . . 5 ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) = 𝑥 ∈ ω (𝐴 ·o 𝑥))
6 ordom 7871 . . . . . . . . 9 Ord ω
7 nnmcl 8624 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ∈ ω)
8 ordelss 6368 . . . . . . . . 9 ((Ord ω ∧ (𝐴 ·o 𝑥) ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω)
96, 7, 8sylancr 587 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω)
109ralrimiva 3132 . . . . . . 7 (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω)
11 iunss 5021 . . . . . . 7 ( 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω)
1210, 11sylibr 234 . . . . . 6 (𝐴 ∈ ω → 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω)
1312adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ ω ∈ On) → 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω)
145, 13eqsstrd 3993 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) ⊆ ω)
1514ancoms 458 . . 3 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 ·o ω) ⊆ ω)
16153adant3 1132 . 2 ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) ⊆ ω)
17 omword2 8586 . . . 4 (((ω ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω))
18173impa 1109 . . 3 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω))
191, 18syl3an2 1164 . 2 ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω))
2016, 19eqssd 3976 1 ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wss 3926  c0 4308   ciun 4967  Ord word 6351  Oncon0 6352  Lim wlim 6353  (class class class)co 7405  ωcom 7861   ·o comu 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485
This theorem is referenced by:  omabs  8663  2omomeqom  43327  omnord1ex  43328
  Copyright terms: Public domain W3C validator