| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omabslem | Structured version Visualization version GIF version | ||
| Description: Lemma for omabs 8663. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| omabslem | ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7867 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | limom 7877 | . . . . . . 7 ⊢ Lim ω | |
| 3 | 2 | jctr 524 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ On ∧ Lim ω)) |
| 4 | omlim 8545 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) | |
| 5 | 1, 3, 4 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) |
| 6 | ordom 7871 | . . . . . . . . 9 ⊢ Ord ω | |
| 7 | nnmcl 8624 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ∈ ω) | |
| 8 | ordelss 6368 | . . . . . . . . 9 ⊢ ((Ord ω ∧ (𝐴 ·o 𝑥) ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) |
| 10 | 9 | ralrimiva 3132 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 11 | iunss 5021 | . . . . . . 7 ⊢ (∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) | |
| 12 | 10, 11 | sylibr 234 | . . . . . 6 ⊢ (𝐴 ∈ ω → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 14 | 5, 13 | eqsstrd 3993 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) ⊆ ω) |
| 15 | 14 | ancoms 458 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 ·o ω) ⊆ ω) |
| 16 | 15 | 3adant3 1132 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) ⊆ ω) |
| 17 | omword2 8586 | . . . 4 ⊢ (((ω ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) | |
| 18 | 17 | 3impa 1109 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
| 19 | 1, 18 | syl3an2 1164 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
| 20 | 16, 19 | eqssd 3976 | 1 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ∅c0 4308 ∪ ciun 4967 Ord word 6351 Oncon0 6352 Lim wlim 6353 (class class class)co 7405 ωcom 7861 ·o comu 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 |
| This theorem is referenced by: omabs 8663 2omomeqom 43327 omnord1ex 43328 |
| Copyright terms: Public domain | W3C validator |