| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omabslem | Structured version Visualization version GIF version | ||
| Description: Lemma for omabs 8618. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| omabslem | ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7851 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | limom 7861 | . . . . . . 7 ⊢ Lim ω | |
| 3 | 2 | jctr 524 | . . . . . 6 ⊢ (ω ∈ On → (ω ∈ On ∧ Lim ω)) |
| 4 | omlim 8500 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ω ∈ On ∧ Lim ω)) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) | |
| 5 | 1, 3, 4 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) = ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥)) |
| 6 | ordom 7855 | . . . . . . . . 9 ⊢ Ord ω | |
| 7 | nnmcl 8579 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ∈ ω) | |
| 8 | ordelss 6351 | . . . . . . . . 9 ⊢ ((Ord ω ∧ (𝐴 ·o 𝑥) ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 ·o 𝑥) ⊆ ω) |
| 10 | 9 | ralrimiva 3126 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 11 | iunss 5012 | . . . . . . 7 ⊢ (∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω ↔ ∀𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) | |
| 12 | 10, 11 | sylibr 234 | . . . . . 6 ⊢ (𝐴 ∈ ω → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → ∪ 𝑥 ∈ ω (𝐴 ·o 𝑥) ⊆ ω) |
| 14 | 5, 13 | eqsstrd 3984 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ On) → (𝐴 ·o ω) ⊆ ω) |
| 15 | 14 | ancoms 458 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 ·o ω) ⊆ ω) |
| 16 | 15 | 3adant3 1132 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) ⊆ ω) |
| 17 | omword2 8541 | . . . 4 ⊢ (((ω ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) | |
| 18 | 17 | 3impa 1109 | . . 3 ⊢ ((ω ∈ On ∧ 𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
| 19 | 1, 18 | syl3an2 1164 | . 2 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → ω ⊆ (𝐴 ·o ω)) |
| 20 | 16, 19 | eqssd 3967 | 1 ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 ∪ ciun 4958 Ord word 6334 Oncon0 6335 Lim wlim 6336 (class class class)co 7390 ωcom 7845 ·o comu 8435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 |
| This theorem is referenced by: omabs 8618 2omomeqom 43299 omnord1ex 43300 |
| Copyright terms: Public domain | W3C validator |