| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ga0 | Structured version Visualization version GIF version | ||
| Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| ga0 | ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ Grp ∧ ∅ ∈ V)) |
| 3 | f0 6759 | . . . 4 ⊢ ∅:∅⟶∅ | |
| 4 | xp0 6147 | . . . . 5 ⊢ ((Base‘𝐺) × ∅) = ∅ | |
| 5 | 4 | feq2i 6698 | . . . 4 ⊢ (∅:((Base‘𝐺) × ∅)⟶∅ ↔ ∅:∅⟶∅) |
| 6 | 3, 5 | mpbir 231 | . . 3 ⊢ ∅:((Base‘𝐺) × ∅)⟶∅ |
| 7 | ral0 4488 | . . 3 ⊢ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥))) | |
| 8 | 6, 7 | pm3.2i 470 | . 2 ⊢ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥)))) |
| 9 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 10 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 11 | eqid 2735 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 12 | 9, 10, 11 | isga 19274 | . 2 ⊢ (∅ ∈ (𝐺 GrpAct ∅) ↔ ((𝐺 ∈ Grp ∧ ∅ ∈ V) ∧ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥)))))) |
| 13 | 2, 8, 12 | sylanblrc 590 | 1 ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∅c0 4308 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Grpcgrp 18916 GrpAct cga 19272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-ga 19273 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |