Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ga0 | Structured version Visualization version GIF version |
Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
ga0 | ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5176 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | jctr 528 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ Grp ∧ ∅ ∈ V)) |
3 | f0 6560 | . . . 4 ⊢ ∅:∅⟶∅ | |
4 | xp0 5991 | . . . . 5 ⊢ ((Base‘𝐺) × ∅) = ∅ | |
5 | 4 | feq2i 6497 | . . . 4 ⊢ (∅:((Base‘𝐺) × ∅)⟶∅ ↔ ∅:∅⟶∅) |
6 | 3, 5 | mpbir 234 | . . 3 ⊢ ∅:((Base‘𝐺) × ∅)⟶∅ |
7 | ral0 4400 | . . 3 ⊢ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥))) | |
8 | 6, 7 | pm3.2i 474 | . 2 ⊢ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥)))) |
9 | eqid 2739 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
10 | eqid 2739 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
11 | eqid 2739 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
12 | 9, 10, 11 | isga 18542 | . 2 ⊢ (∅ ∈ (𝐺 GrpAct ∅) ↔ ((𝐺 ∈ Grp ∧ ∅ ∈ V) ∧ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥)))))) |
13 | 2, 8, 12 | sylanblrc 593 | 1 ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3054 Vcvv 3399 ∅c0 4212 × cxp 5524 ⟶wf 6336 ‘cfv 6340 (class class class)co 7173 Basecbs 16589 +gcplusg 16671 0gc0g 16819 Grpcgrp 18222 GrpAct cga 18540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-map 8442 df-ga 18541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |