MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ga0 Structured version   Visualization version   GIF version

Theorem ga0 19281
Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Assertion
Ref Expression
ga0 (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅))

Proof of Theorem ga0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5277 . . 3 ∅ ∈ V
21jctr 524 . 2 (𝐺 ∈ Grp → (𝐺 ∈ Grp ∧ ∅ ∈ V))
3 f0 6759 . . . 4 ∅:∅⟶∅
4 xp0 6147 . . . . 5 ((Base‘𝐺) × ∅) = ∅
54feq2i 6698 . . . 4 (∅:((Base‘𝐺) × ∅)⟶∅ ↔ ∅:∅⟶∅)
63, 5mpbir 231 . . 3 ∅:((Base‘𝐺) × ∅)⟶∅
7 ral0 4488 . . 3 𝑥 ∈ ∅ (((0g𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧𝑥)))
86, 7pm3.2i 470 . 2 (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧𝑥))))
9 eqid 2735 . . 3 (Base‘𝐺) = (Base‘𝐺)
10 eqid 2735 . . 3 (+g𝐺) = (+g𝐺)
11 eqid 2735 . . 3 (0g𝐺) = (0g𝐺)
129, 10, 11isga 19274 . 2 (∅ ∈ (𝐺 GrpAct ∅) ↔ ((𝐺 ∈ Grp ∧ ∅ ∈ V) ∧ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧𝑥))))))
132, 8, 12sylanblrc 590 1 (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  c0 4308   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916   GrpAct cga 19272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-ga 19273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator