| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ga0 | Structured version Visualization version GIF version | ||
| Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| ga0 | ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ Grp ∧ ∅ ∈ V)) |
| 3 | f0 6789 | . . . 4 ⊢ ∅:∅⟶∅ | |
| 4 | xp0 6178 | . . . . 5 ⊢ ((Base‘𝐺) × ∅) = ∅ | |
| 5 | 4 | feq2i 6728 | . . . 4 ⊢ (∅:((Base‘𝐺) × ∅)⟶∅ ↔ ∅:∅⟶∅) |
| 6 | 3, 5 | mpbir 231 | . . 3 ⊢ ∅:((Base‘𝐺) × ∅)⟶∅ |
| 7 | ral0 4513 | . . 3 ⊢ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥))) | |
| 8 | 6, 7 | pm3.2i 470 | . 2 ⊢ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥)))) |
| 9 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 10 | eqid 2737 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 11 | eqid 2737 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 12 | 9, 10, 11 | isga 19309 | . 2 ⊢ (∅ ∈ (𝐺 GrpAct ∅) ↔ ((𝐺 ∈ Grp ∧ ∅ ∈ V) ∧ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥)))))) |
| 13 | 2, 8, 12 | sylanblrc 590 | 1 ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ∅c0 4333 × cxp 5683 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 0gc0g 17484 Grpcgrp 18951 GrpAct cga 19307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-ga 19308 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |