Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfex | Structured version Visualization version GIF version |
Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
cnfex | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | jctr 525 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) |
3 | istopon 22061 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) | |
4 | 2, 3 | sylibr 233 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
6 | 5 | jctr 525 | . . . 4 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) |
7 | istopon 22061 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐾) ↔ (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
9 | cnfval 22384 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
10 | 4, 8, 9 | syl2an 596 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
11 | uniexg 7593 | . . . . 5 ⊢ (𝐾 ∈ Top → ∪ 𝐾 ∈ V) | |
12 | uniexg 7593 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
13 | mapvalg 8625 | . . . . 5 ⊢ ((∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V) → (∪ 𝐾 ↑m ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) | |
14 | 11, 12, 13 | syl2anr 597 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑m ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) |
15 | mapex 8621 | . . . . 5 ⊢ ((∪ 𝐽 ∈ V ∧ ∪ 𝐾 ∈ V) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) | |
16 | 12, 11, 15 | syl2an 596 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) |
17 | 14, 16 | eqeltrd 2839 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑m ∪ 𝐽) ∈ V) |
18 | rabexg 5255 | . . 3 ⊢ ((∪ 𝐾 ↑m ∪ 𝐽) ∈ V → {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) | |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
20 | 10, 19 | eqeltrd 2839 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 {crab 3068 Vcvv 3432 ∪ cuni 4839 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Topctop 22042 TopOnctopon 22059 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-topon 22060 df-cn 22378 |
This theorem is referenced by: stoweidlem53 43594 stoweidlem57 43598 |
Copyright terms: Public domain | W3C validator |