| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfex | Structured version Visualization version GIF version | ||
| Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| cnfex | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | jctr 524 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) |
| 3 | istopon 22797 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) | |
| 4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 5 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 5 | jctr 524 | . . . 4 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) |
| 7 | istopon 22797 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐾) ↔ (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 9 | cnfval 23118 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
| 10 | 4, 8, 9 | syl2an 596 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
| 11 | uniexg 7676 | . . . . 5 ⊢ (𝐾 ∈ Top → ∪ 𝐾 ∈ V) | |
| 12 | uniexg 7676 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
| 13 | mapvalg 8763 | . . . . 5 ⊢ ((∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V) → (∪ 𝐾 ↑m ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) | |
| 14 | 11, 12, 13 | syl2anr 597 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑m ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) |
| 15 | mapex 7874 | . . . . 5 ⊢ ((∪ 𝐽 ∈ V ∧ ∪ 𝐾 ∈ V) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) | |
| 16 | 12, 11, 15 | syl2an 596 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) |
| 17 | 14, 16 | eqeltrd 2828 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑m ∪ 𝐽) ∈ V) |
| 18 | rabexg 5276 | . . 3 ⊢ ((∪ 𝐾 ↑m ∪ 𝐽) ∈ V → {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
| 20 | 10, 19 | eqeltrd 2828 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3394 Vcvv 3436 ∪ cuni 4858 ◡ccnv 5618 “ cima 5622 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 Topctop 22778 TopOnctopon 22795 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-topon 22796 df-cn 23112 |
| This theorem is referenced by: stoweidlem53 46054 stoweidlem57 46058 |
| Copyright terms: Public domain | W3C validator |