Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfex Structured version   Visualization version   GIF version

Theorem cnfex 44928
Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
cnfex ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)

Proof of Theorem cnfex
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 𝐽 = 𝐽
21jctr 524 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Top ∧ 𝐽 = 𝐽))
3 istopon 22939 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = 𝐽))
42, 3sylibr 234 . . 3 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘ 𝐽))
5 eqid 2740 . . . . 5 𝐾 = 𝐾
65jctr 524 . . . 4 (𝐾 ∈ Top → (𝐾 ∈ Top ∧ 𝐾 = 𝐾))
7 istopon 22939 . . . 4 (𝐾 ∈ (TopOn‘ 𝐾) ↔ (𝐾 ∈ Top ∧ 𝐾 = 𝐾))
86, 7sylibr 234 . . 3 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘ 𝐾))
9 cnfval 23262 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾m 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
104, 8, 9syl2an 595 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾m 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
11 uniexg 7775 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
12 uniexg 7775 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ V)
13 mapvalg 8894 . . . . 5 (( 𝐾 ∈ V ∧ 𝐽 ∈ V) → ( 𝐾m 𝐽) = {𝑓𝑓: 𝐽 𝐾})
1411, 12, 13syl2anr 596 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾m 𝐽) = {𝑓𝑓: 𝐽 𝐾})
15 mapex 7979 . . . . 5 (( 𝐽 ∈ V ∧ 𝐾 ∈ V) → {𝑓𝑓: 𝐽 𝐾} ∈ V)
1612, 11, 15syl2an 595 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓𝑓: 𝐽 𝐾} ∈ V)
1714, 16eqeltrd 2844 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾m 𝐽) ∈ V)
18 rabexg 5355 . . 3 (( 𝐾m 𝐽) ∈ V → {𝑓 ∈ ( 𝐾m 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
1917, 18syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ ( 𝐾m 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
2010, 19eqeltrd 2844 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  {crab 3443  Vcvv 3488   cuni 4931  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Topctop 22920  TopOnctopon 22937   Cn ccn 23253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-topon 22938  df-cn 23256
This theorem is referenced by:  stoweidlem53  45974  stoweidlem57  45978
  Copyright terms: Public domain W3C validator