Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . 5
β’ βͺ π½ =
βͺ π½ |
2 | 1 | jctr 525 |
. . . 4
β’ (π½ β Top β (π½ β Top β§ βͺ π½ =
βͺ π½)) |
3 | | istopon 22634 |
. . . 4
β’ (π½ β (TopOnββͺ π½)
β (π½ β Top β§
βͺ π½ = βͺ π½)) |
4 | 2, 3 | sylibr 233 |
. . 3
β’ (π½ β Top β π½ β (TopOnββͺ π½)) |
5 | | eqid 2732 |
. . . . 5
β’ βͺ πΎ =
βͺ πΎ |
6 | 5 | jctr 525 |
. . . 4
β’ (πΎ β Top β (πΎ β Top β§ βͺ πΎ =
βͺ πΎ)) |
7 | | istopon 22634 |
. . . 4
β’ (πΎ β (TopOnββͺ πΎ)
β (πΎ β Top β§
βͺ πΎ = βͺ πΎ)) |
8 | 6, 7 | sylibr 233 |
. . 3
β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) |
9 | | cnfval 22957 |
. . 3
β’ ((π½ β (TopOnββͺ π½)
β§ πΎ β
(TopOnββͺ πΎ)) β (π½ Cn πΎ) = {π β (βͺ πΎ βm βͺ π½)
β£ βπ¦ β
πΎ (β‘π β π¦) β π½}) |
10 | 4, 8, 9 | syl2an 596 |
. 2
β’ ((π½ β Top β§ πΎ β Top) β (π½ Cn πΎ) = {π β (βͺ πΎ βm βͺ π½)
β£ βπ¦ β
πΎ (β‘π β π¦) β π½}) |
11 | | uniexg 7732 |
. . . . 5
β’ (πΎ β Top β βͺ πΎ
β V) |
12 | | uniexg 7732 |
. . . . 5
β’ (π½ β Top β βͺ π½
β V) |
13 | | mapvalg 8832 |
. . . . 5
β’ ((βͺ πΎ
β V β§ βͺ π½ β V) β (βͺ πΎ
βm βͺ π½) = {π β£ π:βͺ π½βΆβͺ πΎ}) |
14 | 11, 12, 13 | syl2anr 597 |
. . . 4
β’ ((π½ β Top β§ πΎ β Top) β (βͺ πΎ
βm βͺ π½) = {π β£ π:βͺ π½βΆβͺ πΎ}) |
15 | | mapex 8828 |
. . . . 5
β’ ((βͺ π½
β V β§ βͺ πΎ β V) β {π β£ π:βͺ π½βΆβͺ πΎ}
β V) |
16 | 12, 11, 15 | syl2an 596 |
. . . 4
β’ ((π½ β Top β§ πΎ β Top) β {π β£ π:βͺ π½βΆβͺ πΎ}
β V) |
17 | 14, 16 | eqeltrd 2833 |
. . 3
β’ ((π½ β Top β§ πΎ β Top) β (βͺ πΎ
βm βͺ π½) β V) |
18 | | rabexg 5331 |
. . 3
β’ ((βͺ πΎ
βm βͺ π½) β V β {π β (βͺ πΎ βm βͺ π½)
β£ βπ¦ β
πΎ (β‘π β π¦) β π½} β V) |
19 | 17, 18 | syl 17 |
. 2
β’ ((π½ β Top β§ πΎ β Top) β {π β (βͺ πΎ
βm βͺ π½) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β V) |
20 | 10, 19 | eqeltrd 2833 |
1
β’ ((π½ β Top β§ πΎ β Top) β (π½ Cn πΎ) β V) |