| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfex | Structured version Visualization version GIF version | ||
| Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| cnfex | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | jctr 524 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) |
| 3 | istopon 22827 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽)) | |
| 4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 5 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 5 | jctr 524 | . . . 4 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) |
| 7 | istopon 22827 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐾) ↔ (𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾)) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 9 | cnfval 23148 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
| 10 | 4, 8, 9 | syl2an 596 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
| 11 | uniexg 7673 | . . . . 5 ⊢ (𝐾 ∈ Top → ∪ 𝐾 ∈ V) | |
| 12 | uniexg 7673 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
| 13 | mapvalg 8760 | . . . . 5 ⊢ ((∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V) → (∪ 𝐾 ↑m ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) | |
| 14 | 11, 12, 13 | syl2anr 597 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑m ∪ 𝐽) = {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾}) |
| 15 | mapex 7871 | . . . . 5 ⊢ ((∪ 𝐽 ∈ V ∧ ∪ 𝐾 ∈ V) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) | |
| 16 | 12, 11, 15 | syl2an 596 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∣ 𝑓:∪ 𝐽⟶∪ 𝐾} ∈ V) |
| 17 | 14, 16 | eqeltrd 2831 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑m ∪ 𝐽) ∈ V) |
| 18 | rabexg 5273 | . . 3 ⊢ ((∪ 𝐾 ↑m ∪ 𝐽) ∈ V → {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (∪ 𝐾 ↑m ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
| 20 | 10, 19 | eqeltrd 2831 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 {crab 3395 Vcvv 3436 ∪ cuni 4856 ◡ccnv 5613 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Topctop 22808 TopOnctopon 22825 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-topon 22826 df-cn 23142 |
| This theorem is referenced by: stoweidlem53 46150 stoweidlem57 46154 |
| Copyright terms: Public domain | W3C validator |