Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfex Structured version   Visualization version   GIF version

Theorem cnfex 45026
Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
cnfex ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)

Proof of Theorem cnfex
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 𝐽 = 𝐽
21jctr 524 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Top ∧ 𝐽 = 𝐽))
3 istopon 22797 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = 𝐽))
42, 3sylibr 234 . . 3 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘ 𝐽))
5 eqid 2729 . . . . 5 𝐾 = 𝐾
65jctr 524 . . . 4 (𝐾 ∈ Top → (𝐾 ∈ Top ∧ 𝐾 = 𝐾))
7 istopon 22797 . . . 4 (𝐾 ∈ (TopOn‘ 𝐾) ↔ (𝐾 ∈ Top ∧ 𝐾 = 𝐾))
86, 7sylibr 234 . . 3 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘ 𝐾))
9 cnfval 23118 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾m 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
104, 8, 9syl2an 596 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾m 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
11 uniexg 7676 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
12 uniexg 7676 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ V)
13 mapvalg 8763 . . . . 5 (( 𝐾 ∈ V ∧ 𝐽 ∈ V) → ( 𝐾m 𝐽) = {𝑓𝑓: 𝐽 𝐾})
1411, 12, 13syl2anr 597 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾m 𝐽) = {𝑓𝑓: 𝐽 𝐾})
15 mapex 7874 . . . . 5 (( 𝐽 ∈ V ∧ 𝐾 ∈ V) → {𝑓𝑓: 𝐽 𝐾} ∈ V)
1612, 11, 15syl2an 596 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓𝑓: 𝐽 𝐾} ∈ V)
1714, 16eqeltrd 2828 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾m 𝐽) ∈ V)
18 rabexg 5276 . . 3 (( 𝐾m 𝐽) ∈ V → {𝑓 ∈ ( 𝐾m 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
1917, 18syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ ( 𝐾m 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
2010, 19eqeltrd 2828 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3394  Vcvv 3436   cuni 4858  ccnv 5618  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  Topctop 22778  TopOnctopon 22795   Cn ccn 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-topon 22796  df-cn 23112
This theorem is referenced by:  stoweidlem53  46054  stoweidlem57  46058
  Copyright terms: Public domain W3C validator