Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
2 | 1 | lindff 21022 |
. . . 4
⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
3 | 2 | ancoms 459 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
4 | 3 | frnd 6608 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ⊆ (Base‘𝑊)) |
5 | | simpll 764 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → 𝑊 ∈ LMod) |
6 | | imassrn 5980 |
. . . . . . . . 9
⊢ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹 |
7 | 6, 4 | sstrid 3932 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊)) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊)) |
9 | 3 | ffund 6604 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → Fun 𝐹) |
10 | | eldifsn 4720 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (ran 𝐹 ∖ {(𝐹‘𝑦)}) ↔ (𝑥 ∈ ran 𝐹 ∧ 𝑥 ≠ (𝐹‘𝑦))) |
11 | | funfn 6464 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
12 | | fvelrnb 6830 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹‘𝑘) = 𝑥)) |
13 | 11, 12 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹‘𝑘) = 𝑥)) |
14 | 13 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹‘𝑘) = 𝑥)) |
15 | | difss 4066 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
𝐹 ∖ {𝑦}) ⊆ dom 𝐹 |
16 | 15 | jctr 525 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
𝐹 → (Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹)) |
17 | 16 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ≠ (𝐹‘𝑦))) → (Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹)) |
18 | | simpl 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ≠ (𝐹‘𝑦)) → 𝑘 ∈ dom 𝐹) |
19 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑦 → (𝐹‘𝑘) = (𝐹‘𝑦)) |
20 | 19 | necon3i 2976 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑘) ≠ (𝐹‘𝑦) → 𝑘 ≠ 𝑦) |
21 | 20 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ≠ (𝐹‘𝑦)) → 𝑘 ≠ 𝑦) |
22 | | eldifsn 4720 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑘 ∈ dom 𝐹 ∧ 𝑘 ≠ 𝑦)) |
23 | 18, 21, 22 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ≠ (𝐹‘𝑦)) → 𝑘 ∈ (dom 𝐹 ∖ {𝑦})) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ≠ (𝐹‘𝑦))) → 𝑘 ∈ (dom 𝐹 ∖ {𝑦})) |
25 | | funfvima2 7107 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹) → (𝑘 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹‘𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
26 | 17, 24, 25 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ (((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ≠ (𝐹‘𝑦))) → (𝐹‘𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) |
27 | 26 | expr 457 |
. . . . . . . . . . . . . 14
⊢ (((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ≠ (𝐹‘𝑦) → (𝐹‘𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
28 | | neeq1 3006 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) = 𝑥 → ((𝐹‘𝑘) ≠ (𝐹‘𝑦) ↔ 𝑥 ≠ (𝐹‘𝑦))) |
29 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) = 𝑥 → ((𝐹‘𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ↔ 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
30 | 28, 29 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑘) = 𝑥 → (((𝐹‘𝑘) ≠ (𝐹‘𝑦) → (𝐹‘𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) ↔ (𝑥 ≠ (𝐹‘𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))) |
31 | 27, 30 | syl5ibcom 244 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) = 𝑥 → (𝑥 ≠ (𝐹‘𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))) |
32 | 31 | rexlimdva 3213 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (∃𝑘 ∈ dom 𝐹(𝐹‘𝑘) = 𝑥 → (𝑥 ≠ (𝐹‘𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))) |
33 | 14, 32 | sylbid 239 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 ≠ (𝐹‘𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))) |
34 | 33 | impd 411 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝑥 ∈ ran 𝐹 ∧ 𝑥 ≠ (𝐹‘𝑦)) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
35 | 10, 34 | syl5bi 241 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝑥 ∈ (ran 𝐹 ∖ {(𝐹‘𝑦)}) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
36 | 35 | ssrdv 3927 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (ran 𝐹 ∖ {(𝐹‘𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) |
37 | 9, 36 | sylan 580 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → (ran 𝐹 ∖ {(𝐹‘𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) |
38 | | eqid 2738 |
. . . . . . . 8
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
39 | 1, 38 | lspss 20246 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊) ∧ (ran 𝐹 ∖ {(𝐹‘𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
40 | 5, 8, 37, 39 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
41 | 40 | adantrr 714 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
42 | | simplr 766 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊) |
43 | | simprl 768 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝑦 ∈ dom 𝐹) |
44 | | eldifi 4061 |
. . . . . . 7
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) |
45 | 44 | ad2antll 726 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) |
46 | | eldifsni 4723 |
. . . . . . 7
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) → 𝑘 ≠
(0g‘(Scalar‘𝑊))) |
47 | 46 | ad2antll 726 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠
(0g‘(Scalar‘𝑊))) |
48 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
49 | | eqid 2738 |
. . . . . . 7
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
50 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
51 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
52 | 48, 38, 49, 50, 51 | lindfind 21023 |
. . . . . 6
⊢ (((𝐹 LIndF 𝑊 ∧ 𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
53 | 42, 43, 45, 47, 52 | syl22anc 836 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
54 | 41, 53 | ssneldd 3924 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)}))) |
55 | 54 | ralrimivva 3123 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ∀𝑦 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)}))) |
56 | 9 | funfnd 6465 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹 Fn dom 𝐹) |
57 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑦) → (𝑘( ·𝑠
‘𝑊)𝑥) = (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦))) |
58 | | sneq 4571 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘𝑦) → {𝑥} = {(𝐹‘𝑦)}) |
59 | 58 | difeq2d 4057 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑦) → (ran 𝐹 ∖ {𝑥}) = (ran 𝐹 ∖ {(𝐹‘𝑦)})) |
60 | 59 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑦) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) = ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)}))) |
61 | 57, 60 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑦) → ((𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)})))) |
62 | 61 | notbid 318 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑦) → (¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)})))) |
63 | 62 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑦) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)})))) |
64 | 63 | ralrn 6964 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → (∀𝑥 ∈ ran 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑦 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)})))) |
65 | 56, 64 | syl 17 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (∀𝑥 ∈ ran 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑦 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹‘𝑦)})))) |
66 | 55, 65 | mpbird 256 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ ran 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥}))) |
67 | 1, 48, 38, 49, 51, 50 | islinds2 21020 |
. . 3
⊢ (𝑊 ∈ LMod → (ran 𝐹 ∈ (LIndS‘𝑊) ↔ (ran 𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ran 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥}))))) |
68 | 67 | adantr 481 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (ran 𝐹 ∈ (LIndS‘𝑊) ↔ (ran 𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ran 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥}))))) |
69 | 4, 66, 68 | mpbir2and 710 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) |