MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfrn Structured version   Visualization version   GIF version

Theorem lindfrn 21737
Description: The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfrn ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))

Proof of Theorem lindfrn
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
21lindff 21731 . . . 4 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
32ancoms 458 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊))
43frnd 6699 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ⊆ (Base‘𝑊))
5 simpll 766 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → 𝑊 ∈ LMod)
6 imassrn 6045 . . . . . . . . 9 (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹
76, 4sstrid 3961 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊))
87adantr 480 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊))
93ffund 6695 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → Fun 𝐹)
10 eldifsn 4753 . . . . . . . . . 10 (𝑥 ∈ (ran 𝐹 ∖ {(𝐹𝑦)}) ↔ (𝑥 ∈ ran 𝐹𝑥 ≠ (𝐹𝑦)))
11 funfn 6549 . . . . . . . . . . . . . 14 (Fun 𝐹𝐹 Fn dom 𝐹)
12 fvelrnb 6924 . . . . . . . . . . . . . 14 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
1311, 12sylbi 217 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
1413adantr 480 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
15 difss 4102 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹
1615jctr 524 . . . . . . . . . . . . . . . . 17 (Fun 𝐹 → (Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹))
1716ad2antrr 726 . . . . . . . . . . . . . . . 16 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → (Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹))
18 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘 ∈ dom 𝐹)
19 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
2019necon3i 2958 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑘) ≠ (𝐹𝑦) → 𝑘𝑦)
2120adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘𝑦)
22 eldifsn 4753 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑘 ∈ dom 𝐹𝑘𝑦))
2318, 21, 22sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘 ∈ (dom 𝐹 ∖ {𝑦}))
2423adantl 481 . . . . . . . . . . . . . . . 16 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → 𝑘 ∈ (dom 𝐹 ∖ {𝑦}))
25 funfvima2 7208 . . . . . . . . . . . . . . . 16 ((Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹) → (𝑘 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
2617, 24, 25sylc 65 . . . . . . . . . . . . . . 15 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
2726expr 456 . . . . . . . . . . . . . 14 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ≠ (𝐹𝑦) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
28 neeq1 2988 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = 𝑥 → ((𝐹𝑘) ≠ (𝐹𝑦) ↔ 𝑥 ≠ (𝐹𝑦)))
29 eleq1 2817 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = 𝑥 → ((𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ↔ 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3028, 29imbi12d 344 . . . . . . . . . . . . . 14 ((𝐹𝑘) = 𝑥 → (((𝐹𝑘) ≠ (𝐹𝑦) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) ↔ (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3127, 30syl5ibcom 245 . . . . . . . . . . . . 13 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) = 𝑥 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3231rexlimdva 3135 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3314, 32sylbid 240 . . . . . . . . . . 11 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3433impd 410 . . . . . . . . . 10 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝑥 ∈ ran 𝐹𝑥 ≠ (𝐹𝑦)) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3510, 34biimtrid 242 . . . . . . . . 9 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ (ran 𝐹 ∖ {(𝐹𝑦)}) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3635ssrdv 3955 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
379, 36sylan 580 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
38 eqid 2730 . . . . . . . 8 (LSpan‘𝑊) = (LSpan‘𝑊)
391, 38lspss 20897 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊) ∧ (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
405, 8, 37, 39syl3anc 1373 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
4140adantrr 717 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
42 simplr 768 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊)
43 simprl 770 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦 ∈ dom 𝐹)
44 eldifi 4097 . . . . . . 7 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
4544ad2antll 729 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
46 eldifsni 4757 . . . . . . 7 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
4746ad2antll 729 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
48 eqid 2730 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
49 eqid 2730 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
50 eqid 2730 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
51 eqid 2730 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5248, 38, 49, 50, 51lindfind 21732 . . . . . 6 (((𝐹 LIndF 𝑊𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
5342, 43, 45, 47, 52syl22anc 838 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
5441, 53ssneldd 3952 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
5554ralrimivva 3181 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
569funfnd 6550 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹 Fn dom 𝐹)
57 oveq2 7398 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (𝑘( ·𝑠𝑊)𝑥) = (𝑘( ·𝑠𝑊)(𝐹𝑦)))
58 sneq 4602 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → {𝑥} = {(𝐹𝑦)})
5958difeq2d 4092 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (ran 𝐹 ∖ {𝑥}) = (ran 𝐹 ∖ {(𝐹𝑦)}))
6059fveq2d 6865 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) = ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
6157, 60eleq12d 2823 . . . . . . 7 (𝑥 = (𝐹𝑦) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6261notbid 318 . . . . . 6 (𝑥 = (𝐹𝑦) → (¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6362ralbidv 3157 . . . . 5 (𝑥 = (𝐹𝑦) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6463ralrn 7063 . . . 4 (𝐹 Fn dom 𝐹 → (∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6556, 64syl 17 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6655, 65mpbird 257 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))
671, 48, 38, 49, 51, 50islinds2 21729 . . 3 (𝑊 ∈ LMod → (ran 𝐹 ∈ (LIndS‘𝑊) ↔ (ran 𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))))
6867adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (ran 𝐹 ∈ (LIndS‘𝑊) ↔ (ran 𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))))
694, 66, 68mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  LModclmod 20773  LSpanclspn 20884   LIndF clindf 21720  LIndSclinds 21721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lindf 21722  df-linds 21723
This theorem is referenced by:  islindf3  21742  lindsmm  21744  matunitlindflem2  37618
  Copyright terms: Public domain W3C validator