MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfrn Structured version   Visualization version   GIF version

Theorem lindfrn 21758
Description: The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfrn ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))

Proof of Theorem lindfrn
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
21lindff 21752 . . . 4 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
32ancoms 458 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊))
43frnd 6659 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ⊆ (Base‘𝑊))
5 simpll 766 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → 𝑊 ∈ LMod)
6 imassrn 6019 . . . . . . . . 9 (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹
76, 4sstrid 3941 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊))
87adantr 480 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊))
93ffund 6655 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → Fun 𝐹)
10 eldifsn 4735 . . . . . . . . . 10 (𝑥 ∈ (ran 𝐹 ∖ {(𝐹𝑦)}) ↔ (𝑥 ∈ ran 𝐹𝑥 ≠ (𝐹𝑦)))
11 funfn 6511 . . . . . . . . . . . . . 14 (Fun 𝐹𝐹 Fn dom 𝐹)
12 fvelrnb 6882 . . . . . . . . . . . . . 14 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
1311, 12sylbi 217 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
1413adantr 480 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
15 difss 4083 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹
1615jctr 524 . . . . . . . . . . . . . . . . 17 (Fun 𝐹 → (Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹))
1716ad2antrr 726 . . . . . . . . . . . . . . . 16 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → (Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹))
18 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘 ∈ dom 𝐹)
19 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
2019necon3i 2960 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑘) ≠ (𝐹𝑦) → 𝑘𝑦)
2120adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘𝑦)
22 eldifsn 4735 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑘 ∈ dom 𝐹𝑘𝑦))
2318, 21, 22sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘 ∈ (dom 𝐹 ∖ {𝑦}))
2423adantl 481 . . . . . . . . . . . . . . . 16 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → 𝑘 ∈ (dom 𝐹 ∖ {𝑦}))
25 funfvima2 7165 . . . . . . . . . . . . . . . 16 ((Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹) → (𝑘 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
2617, 24, 25sylc 65 . . . . . . . . . . . . . . 15 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
2726expr 456 . . . . . . . . . . . . . 14 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ≠ (𝐹𝑦) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
28 neeq1 2990 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = 𝑥 → ((𝐹𝑘) ≠ (𝐹𝑦) ↔ 𝑥 ≠ (𝐹𝑦)))
29 eleq1 2819 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = 𝑥 → ((𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ↔ 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3028, 29imbi12d 344 . . . . . . . . . . . . . 14 ((𝐹𝑘) = 𝑥 → (((𝐹𝑘) ≠ (𝐹𝑦) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) ↔ (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3127, 30syl5ibcom 245 . . . . . . . . . . . . 13 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) = 𝑥 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3231rexlimdva 3133 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3314, 32sylbid 240 . . . . . . . . . . 11 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3433impd 410 . . . . . . . . . 10 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝑥 ∈ ran 𝐹𝑥 ≠ (𝐹𝑦)) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3510, 34biimtrid 242 . . . . . . . . 9 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ (ran 𝐹 ∖ {(𝐹𝑦)}) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3635ssrdv 3935 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
379, 36sylan 580 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
38 eqid 2731 . . . . . . . 8 (LSpan‘𝑊) = (LSpan‘𝑊)
391, 38lspss 20917 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊) ∧ (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
405, 8, 37, 39syl3anc 1373 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
4140adantrr 717 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
42 simplr 768 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊)
43 simprl 770 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦 ∈ dom 𝐹)
44 eldifi 4078 . . . . . . 7 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
4544ad2antll 729 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
46 eldifsni 4739 . . . . . . 7 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
4746ad2antll 729 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
48 eqid 2731 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
49 eqid 2731 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
50 eqid 2731 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
51 eqid 2731 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5248, 38, 49, 50, 51lindfind 21753 . . . . . 6 (((𝐹 LIndF 𝑊𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
5342, 43, 45, 47, 52syl22anc 838 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
5441, 53ssneldd 3932 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
5554ralrimivva 3175 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
569funfnd 6512 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹 Fn dom 𝐹)
57 oveq2 7354 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (𝑘( ·𝑠𝑊)𝑥) = (𝑘( ·𝑠𝑊)(𝐹𝑦)))
58 sneq 4583 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → {𝑥} = {(𝐹𝑦)})
5958difeq2d 4073 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (ran 𝐹 ∖ {𝑥}) = (ran 𝐹 ∖ {(𝐹𝑦)}))
6059fveq2d 6826 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) = ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
6157, 60eleq12d 2825 . . . . . . 7 (𝑥 = (𝐹𝑦) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6261notbid 318 . . . . . 6 (𝑥 = (𝐹𝑦) → (¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6362ralbidv 3155 . . . . 5 (𝑥 = (𝐹𝑦) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6463ralrn 7021 . . . 4 (𝐹 Fn dom 𝐹 → (∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6556, 64syl 17 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6655, 65mpbird 257 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))
671, 48, 38, 49, 51, 50islinds2 21750 . . 3 (𝑊 ∈ LMod → (ran 𝐹 ∈ (LIndS‘𝑊) ↔ (ran 𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))))
6867adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (ran 𝐹 ∈ (LIndS‘𝑊) ↔ (ran 𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))))
694, 66, 68mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3894  wss 3897  {csn 4573   class class class wbr 5089  dom cdm 5614  ran crn 5615  cima 5617  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LModclmod 20793  LSpanclspn 20904   LIndF clindf 21741  LIndSclinds 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-slot 17093  df-ndx 17105  df-base 17121  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lindf 21743  df-linds 21744
This theorem is referenced by:  islindf3  21763  lindsmm  21765  matunitlindflem2  37667
  Copyright terms: Public domain W3C validator