MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfrn Structured version   Visualization version   GIF version

Theorem lindfrn 21730
Description: The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfrn ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))

Proof of Theorem lindfrn
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
21lindff 21724 . . . 4 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
32ancoms 458 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊))
43frnd 6696 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ⊆ (Base‘𝑊))
5 simpll 766 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → 𝑊 ∈ LMod)
6 imassrn 6042 . . . . . . . . 9 (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹
76, 4sstrid 3958 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊))
87adantr 480 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊))
93ffund 6692 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → Fun 𝐹)
10 eldifsn 4750 . . . . . . . . . 10 (𝑥 ∈ (ran 𝐹 ∖ {(𝐹𝑦)}) ↔ (𝑥 ∈ ran 𝐹𝑥 ≠ (𝐹𝑦)))
11 funfn 6546 . . . . . . . . . . . . . 14 (Fun 𝐹𝐹 Fn dom 𝐹)
12 fvelrnb 6921 . . . . . . . . . . . . . 14 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
1311, 12sylbi 217 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
1413adantr 480 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ ran 𝐹 ↔ ∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥))
15 difss 4099 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹
1615jctr 524 . . . . . . . . . . . . . . . . 17 (Fun 𝐹 → (Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹))
1716ad2antrr 726 . . . . . . . . . . . . . . . 16 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → (Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹))
18 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘 ∈ dom 𝐹)
19 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
2019necon3i 2957 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑘) ≠ (𝐹𝑦) → 𝑘𝑦)
2120adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘𝑦)
22 eldifsn 4750 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑘 ∈ dom 𝐹𝑘𝑦))
2318, 21, 22sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦)) → 𝑘 ∈ (dom 𝐹 ∖ {𝑦}))
2423adantl 481 . . . . . . . . . . . . . . . 16 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → 𝑘 ∈ (dom 𝐹 ∖ {𝑦}))
25 funfvima2 7205 . . . . . . . . . . . . . . . 16 ((Fun 𝐹 ∧ (dom 𝐹 ∖ {𝑦}) ⊆ dom 𝐹) → (𝑘 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
2617, 24, 25sylc 65 . . . . . . . . . . . . . . 15 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ≠ (𝐹𝑦))) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
2726expr 456 . . . . . . . . . . . . . 14 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ≠ (𝐹𝑦) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
28 neeq1 2987 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = 𝑥 → ((𝐹𝑘) ≠ (𝐹𝑦) ↔ 𝑥 ≠ (𝐹𝑦)))
29 eleq1 2816 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = 𝑥 → ((𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ↔ 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3028, 29imbi12d 344 . . . . . . . . . . . . . 14 ((𝐹𝑘) = 𝑥 → (((𝐹𝑘) ≠ (𝐹𝑦) → (𝐹𝑘) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) ↔ (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3127, 30syl5ibcom 245 . . . . . . . . . . . . 13 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) = 𝑥 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3231rexlimdva 3134 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (∃𝑘 ∈ dom 𝐹(𝐹𝑘) = 𝑥 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3314, 32sylbid 240 . . . . . . . . . . 11 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 ≠ (𝐹𝑦) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))))
3433impd 410 . . . . . . . . . 10 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝑥 ∈ ran 𝐹𝑥 ≠ (𝐹𝑦)) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3510, 34biimtrid 242 . . . . . . . . 9 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑥 ∈ (ran 𝐹 ∖ {(𝐹𝑦)}) → 𝑥 ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
3635ssrdv 3952 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
379, 36sylan 580 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
38 eqid 2729 . . . . . . . 8 (LSpan‘𝑊) = (LSpan‘𝑊)
391, 38lspss 20890 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ (Base‘𝑊) ∧ (ran 𝐹 ∖ {(𝐹𝑦)}) ⊆ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
405, 8, 37, 39syl3anc 1373 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ 𝑦 ∈ dom 𝐹) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
4140adantrr 717 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
42 simplr 768 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊)
43 simprl 770 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦 ∈ dom 𝐹)
44 eldifi 4094 . . . . . . 7 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
4544ad2antll 729 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
46 eldifsni 4754 . . . . . . 7 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
4746ad2antll 729 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
48 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
49 eqid 2729 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
50 eqid 2729 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
51 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5248, 38, 49, 50, 51lindfind 21725 . . . . . 6 (((𝐹 LIndF 𝑊𝑦 ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
5342, 43, 45, 47, 52syl22anc 838 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
5441, 53ssneldd 3949 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) ∧ (𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
5554ralrimivva 3180 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
569funfnd 6547 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹 Fn dom 𝐹)
57 oveq2 7395 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (𝑘( ·𝑠𝑊)𝑥) = (𝑘( ·𝑠𝑊)(𝐹𝑦)))
58 sneq 4599 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → {𝑥} = {(𝐹𝑦)})
5958difeq2d 4089 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (ran 𝐹 ∖ {𝑥}) = (ran 𝐹 ∖ {(𝐹𝑦)}))
6059fveq2d 6862 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) = ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)})))
6157, 60eleq12d 2822 . . . . . . 7 (𝑥 = (𝐹𝑦) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6261notbid 318 . . . . . 6 (𝑥 = (𝐹𝑦) → (¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6362ralbidv 3156 . . . . 5 (𝑥 = (𝐹𝑦) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6463ralrn 7060 . . . 4 (𝐹 Fn dom 𝐹 → (∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6556, 64syl 17 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})) ↔ ∀𝑦 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑦)) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {(𝐹𝑦)}))))
6655, 65mpbird 257 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))
671, 48, 38, 49, 51, 50islinds2 21722 . . 3 (𝑊 ∈ LMod → (ran 𝐹 ∈ (LIndS‘𝑊) ↔ (ran 𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))))
6867adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (ran 𝐹 ∈ (LIndS‘𝑊) ↔ (ran 𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ ran 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(ran 𝐹 ∖ {𝑥})))))
694, 66, 68mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LModclmod 20766  LSpanclspn 20877   LIndF clindf 21713  LIndSclinds 21714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lindf 21715  df-linds 21716
This theorem is referenced by:  islindf3  21735  lindsmm  21737  matunitlindflem2  37611
  Copyright terms: Public domain W3C validator