Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lenelioc Structured version   Visualization version   GIF version

Theorem lenelioc 44249
Description: A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
lenelioc.1 (𝜑𝐴 ∈ ℝ*)
lenelioc.2 (𝜑𝐵 ∈ ℝ*)
lenelioc.3 (𝜑𝐶 ∈ ℝ*)
lenelioc.4 (𝜑𝐶𝐴)
Assertion
Ref Expression
lenelioc (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem lenelioc
StepHypRef Expression
1 lenelioc.4 . . . 4 (𝜑𝐶𝐴)
2 lenelioc.3 . . . . 5 (𝜑𝐶 ∈ ℝ*)
3 lenelioc.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
42, 3xrlenltd 11280 . . . 4 (𝜑 → (𝐶𝐴 ↔ ¬ 𝐴 < 𝐶))
51, 4mpbid 231 . . 3 (𝜑 → ¬ 𝐴 < 𝐶)
65intn3an2d 1481 . 2 (𝜑 → ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
7 lenelioc.2 . . 3 (𝜑𝐵 ∈ ℝ*)
8 elioc1 13366 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
93, 7, 8syl2anc 585 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
106, 9mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1088  wcel 2107   class class class wbr 5149  (class class class)co 7409  *cxr 11247   < clt 11248  cle 11249  (,]cioc 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-xr 11252  df-le 11254  df-ioc 13329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator