Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lenelioc Structured version   Visualization version   GIF version

Theorem lenelioc 40685
Description: A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
lenelioc.1 (𝜑𝐴 ∈ ℝ*)
lenelioc.2 (𝜑𝐵 ∈ ℝ*)
lenelioc.3 (𝜑𝐶 ∈ ℝ*)
lenelioc.4 (𝜑𝐶𝐴)
Assertion
Ref Expression
lenelioc (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem lenelioc
StepHypRef Expression
1 lenelioc.4 . . . 4 (𝜑𝐶𝐴)
2 lenelioc.3 . . . . 5 (𝜑𝐶 ∈ ℝ*)
3 lenelioc.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
42, 3xrlenltd 10445 . . . 4 (𝜑 → (𝐶𝐴 ↔ ¬ 𝐴 < 𝐶))
51, 4mpbid 224 . . 3 (𝜑 → ¬ 𝐴 < 𝐶)
65intn3an2d 1553 . 2 (𝜑 → ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
7 lenelioc.2 . . 3 (𝜑𝐵 ∈ ℝ*)
8 elioc1 12534 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
93, 7, 8syl2anc 579 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
106, 9mtbird 317 1 (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  w3a 1071  wcel 2107   class class class wbr 4888  (class class class)co 6924  *cxr 10412   < clt 10413  cle 10414  (,]cioc 12493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-iota 6101  df-fun 6139  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-xr 10417  df-le 10419  df-ioc 12497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator