| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lenelioc | Structured version Visualization version GIF version | ||
| Description: A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| lenelioc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| lenelioc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| lenelioc.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| lenelioc.4 | ⊢ (𝜑 → 𝐶 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| lenelioc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenelioc.4 | . . . 4 ⊢ (𝜑 → 𝐶 ≤ 𝐴) | |
| 2 | lenelioc.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 3 | lenelioc.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | 2, 3 | xrlenltd 11306 | . . . 4 ⊢ (𝜑 → (𝐶 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐶)) |
| 5 | 1, 4 | mpbid 232 | . . 3 ⊢ (𝜑 → ¬ 𝐴 < 𝐶) |
| 6 | 5 | intn3an2d 1482 | . 2 ⊢ (𝜑 → ¬ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 7 | lenelioc.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 8 | elioc1 13409 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 9 | 3, 7, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 10 | 6, 9 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 (,]cioc 13368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-xr 11278 df-le 11280 df-ioc 13372 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |