Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lenelioc Structured version   Visualization version   GIF version

Theorem lenelioc 43303
Description: A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
lenelioc.1 (𝜑𝐴 ∈ ℝ*)
lenelioc.2 (𝜑𝐵 ∈ ℝ*)
lenelioc.3 (𝜑𝐶 ∈ ℝ*)
lenelioc.4 (𝜑𝐶𝐴)
Assertion
Ref Expression
lenelioc (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem lenelioc
StepHypRef Expression
1 lenelioc.4 . . . 4 (𝜑𝐶𝐴)
2 lenelioc.3 . . . . 5 (𝜑𝐶 ∈ ℝ*)
3 lenelioc.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
42, 3xrlenltd 11091 . . . 4 (𝜑 → (𝐶𝐴 ↔ ¬ 𝐴 < 𝐶))
51, 4mpbid 231 . . 3 (𝜑 → ¬ 𝐴 < 𝐶)
65intn3an2d 1480 . 2 (𝜑 → ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
7 lenelioc.2 . . 3 (𝜑𝐵 ∈ ℝ*)
8 elioc1 13171 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
93, 7, 8syl2anc 585 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
106, 9mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1087  wcel 2104   class class class wbr 5081  (class class class)co 7307  *cxr 11058   < clt 11059  cle 11060  (,]cioc 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-xr 11063  df-le 11065  df-ioc 13134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator