Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lenelioc Structured version   Visualization version   GIF version

Theorem lenelioc 45541
Description: A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
lenelioc.1 (𝜑𝐴 ∈ ℝ*)
lenelioc.2 (𝜑𝐵 ∈ ℝ*)
lenelioc.3 (𝜑𝐶 ∈ ℝ*)
lenelioc.4 (𝜑𝐶𝐴)
Assertion
Ref Expression
lenelioc (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem lenelioc
StepHypRef Expression
1 lenelioc.4 . . . 4 (𝜑𝐶𝐴)
2 lenelioc.3 . . . . 5 (𝜑𝐶 ∈ ℝ*)
3 lenelioc.1 . . . . 5 (𝜑𝐴 ∈ ℝ*)
42, 3xrlenltd 11247 . . . 4 (𝜑 → (𝐶𝐴 ↔ ¬ 𝐴 < 𝐶))
51, 4mpbid 232 . . 3 (𝜑 → ¬ 𝐴 < 𝐶)
65intn3an2d 1482 . 2 (𝜑 → ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
7 lenelioc.2 . . 3 (𝜑𝐵 ∈ ℝ*)
8 elioc1 13355 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
93, 7, 8syl2anc 584 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
106, 9mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086  wcel 2109   class class class wbr 5110  (class class class)co 7390  *cxr 11214   < clt 11215  cle 11216  (,]cioc 13314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-xr 11219  df-le 11221  df-ioc 13318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator