![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioonct | Structured version Visualization version GIF version |
Description: A nonempty open interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ioonct.b | β’ (π β π΄ β β*) |
ioonct.c | β’ (π β π΅ β β*) |
ioonct.l | β’ (π β π΄ < π΅) |
ioonct.a | β’ πΆ = (π΄(,)π΅) |
Ref | Expression |
---|---|
ioonct | β’ (π β Β¬ πΆ βΌ Ο) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioontr 44224 | . . . 4 β’ ((intβ(topGenβran (,)))β(π΄(,)π΅)) = (π΄(,)π΅) | |
2 | 1 | a1i 11 | . . 3 β’ ((π β§ πΆ βΌ Ο) β ((intβ(topGenβran (,)))β(π΄(,)π΅)) = (π΄(,)π΅)) |
3 | ioossre 13385 | . . . . 5 β’ (π΄(,)π΅) β β | |
4 | 3 | a1i 11 | . . . 4 β’ ((π β§ πΆ βΌ Ο) β (π΄(,)π΅) β β) |
5 | ioonct.a | . . . . . . . 8 β’ πΆ = (π΄(,)π΅) | |
6 | 5 | breq1i 5156 | . . . . . . 7 β’ (πΆ βΌ Ο β (π΄(,)π΅) βΌ Ο) |
7 | 6 | biimpi 215 | . . . . . 6 β’ (πΆ βΌ Ο β (π΄(,)π΅) βΌ Ο) |
8 | nnenom 13945 | . . . . . . . 8 β’ β β Ο | |
9 | 8 | ensymi 9000 | . . . . . . 7 β’ Ο β β |
10 | 9 | a1i 11 | . . . . . 6 β’ (πΆ βΌ Ο β Ο β β) |
11 | domentr 9009 | . . . . . 6 β’ (((π΄(,)π΅) βΌ Ο β§ Ο β β) β (π΄(,)π΅) βΌ β) | |
12 | 7, 10, 11 | syl2anc 585 | . . . . 5 β’ (πΆ βΌ Ο β (π΄(,)π΅) βΌ β) |
13 | 12 | adantl 483 | . . . 4 β’ ((π β§ πΆ βΌ Ο) β (π΄(,)π΅) βΌ β) |
14 | rectbntr0 24348 | . . . 4 β’ (((π΄(,)π΅) β β β§ (π΄(,)π΅) βΌ β) β ((intβ(topGenβran (,)))β(π΄(,)π΅)) = β ) | |
15 | 4, 13, 14 | syl2anc 585 | . . 3 β’ ((π β§ πΆ βΌ Ο) β ((intβ(topGenβran (,)))β(π΄(,)π΅)) = β ) |
16 | 2, 15 | eqtr3d 2775 | . 2 β’ ((π β§ πΆ βΌ Ο) β (π΄(,)π΅) = β ) |
17 | ioonct.l | . . . . 5 β’ (π β π΄ < π΅) | |
18 | ioonct.b | . . . . . 6 β’ (π β π΄ β β*) | |
19 | ioonct.c | . . . . . 6 β’ (π β π΅ β β*) | |
20 | ioon0 13350 | . . . . . 6 β’ ((π΄ β β* β§ π΅ β β*) β ((π΄(,)π΅) β β β π΄ < π΅)) | |
21 | 18, 19, 20 | syl2anc 585 | . . . . 5 β’ (π β ((π΄(,)π΅) β β β π΄ < π΅)) |
22 | 17, 21 | mpbird 257 | . . . 4 β’ (π β (π΄(,)π΅) β β ) |
23 | 22 | neneqd 2946 | . . 3 β’ (π β Β¬ (π΄(,)π΅) = β ) |
24 | 23 | adantr 482 | . 2 β’ ((π β§ πΆ βΌ Ο) β Β¬ (π΄(,)π΅) = β ) |
25 | 16, 24 | pm2.65da 816 | 1 β’ (π β Β¬ πΆ βΌ Ο) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 β wss 3949 β c0 4323 class class class wbr 5149 ran crn 5678 βcfv 6544 (class class class)co 7409 Οcom 7855 β cen 8936 βΌ cdom 8937 βcr 11109 β*cxr 11247 < clt 11248 βcn 12212 (,)cioo 13324 topGenctg 17383 intcnt 22521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-omul 8471 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-acn 9937 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-topgen 17389 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-top 22396 df-topon 22413 df-bases 22449 df-ntr 22524 |
This theorem is referenced by: iocnct 44253 iccnct 44254 |
Copyright terms: Public domain | W3C validator |