| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ioonct | Structured version Visualization version GIF version | ||
| Description: A nonempty open interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| ioonct.b | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| ioonct.c | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| ioonct.l | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ioonct.a | ⊢ 𝐶 = (𝐴(,)𝐵) |
| Ref | Expression |
|---|---|
| ioonct | ⊢ (𝜑 → ¬ 𝐶 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioontr 45482 | . . . 4 ⊢ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
| 3 | ioossre 13344 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → (𝐴(,)𝐵) ⊆ ℝ) |
| 5 | ioonct.a | . . . . . . . 8 ⊢ 𝐶 = (𝐴(,)𝐵) | |
| 6 | 5 | breq1i 5109 | . . . . . . 7 ⊢ (𝐶 ≼ ω ↔ (𝐴(,)𝐵) ≼ ω) |
| 7 | 6 | biimpi 216 | . . . . . 6 ⊢ (𝐶 ≼ ω → (𝐴(,)𝐵) ≼ ω) |
| 8 | nnenom 13921 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 9 | 8 | ensymi 8952 | . . . . . . 7 ⊢ ω ≈ ℕ |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝐶 ≼ ω → ω ≈ ℕ) |
| 11 | domentr 8961 | . . . . . 6 ⊢ (((𝐴(,)𝐵) ≼ ω ∧ ω ≈ ℕ) → (𝐴(,)𝐵) ≼ ℕ) | |
| 12 | 7, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (𝐶 ≼ ω → (𝐴(,)𝐵) ≼ ℕ) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → (𝐴(,)𝐵) ≼ ℕ) |
| 14 | rectbntr0 24697 | . . . 4 ⊢ (((𝐴(,)𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ≼ ℕ) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ∅) | |
| 15 | 4, 13, 14 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ∅) |
| 16 | 2, 15 | eqtr3d 2766 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → (𝐴(,)𝐵) = ∅) |
| 17 | ioonct.l | . . . . 5 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 18 | ioonct.b | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 19 | ioonct.c | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 20 | ioon0 13308 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵)) | |
| 21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵)) |
| 22 | 17, 21 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ≠ ∅) |
| 23 | 22 | neneqd 2930 | . . 3 ⊢ (𝜑 → ¬ (𝐴(,)𝐵) = ∅) |
| 24 | 23 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → ¬ (𝐴(,)𝐵) = ∅) |
| 25 | 16, 24 | pm2.65da 816 | 1 ⊢ (𝜑 → ¬ 𝐶 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ωcom 7822 ≈ cen 8892 ≼ cdom 8893 ℝcr 11043 ℝ*cxr 11183 < clt 11184 ℕcn 12162 (,)cioo 13282 topGenctg 17376 intcnt 22880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-bases 22809 df-ntr 22883 |
| This theorem is referenced by: iocnct 45511 iccnct 45512 |
| Copyright terms: Public domain | W3C validator |