Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioonct | Structured version Visualization version GIF version |
Description: A nonempty open interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ioonct.b | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
ioonct.c | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
ioonct.l | ⊢ (𝜑 → 𝐴 < 𝐵) |
ioonct.a | ⊢ 𝐶 = (𝐴(,)𝐵) |
Ref | Expression |
---|---|
ioonct | ⊢ (𝜑 → ¬ 𝐶 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioontr 43019 | . . . 4 ⊢ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
3 | ioossre 13138 | . . . . 5 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → (𝐴(,)𝐵) ⊆ ℝ) |
5 | ioonct.a | . . . . . . . 8 ⊢ 𝐶 = (𝐴(,)𝐵) | |
6 | 5 | breq1i 5083 | . . . . . . 7 ⊢ (𝐶 ≼ ω ↔ (𝐴(,)𝐵) ≼ ω) |
7 | 6 | biimpi 215 | . . . . . 6 ⊢ (𝐶 ≼ ω → (𝐴(,)𝐵) ≼ ω) |
8 | nnenom 13698 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
9 | 8 | ensymi 8788 | . . . . . . 7 ⊢ ω ≈ ℕ |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝐶 ≼ ω → ω ≈ ℕ) |
11 | domentr 8797 | . . . . . 6 ⊢ (((𝐴(,)𝐵) ≼ ω ∧ ω ≈ ℕ) → (𝐴(,)𝐵) ≼ ℕ) | |
12 | 7, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (𝐶 ≼ ω → (𝐴(,)𝐵) ≼ ℕ) |
13 | 12 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → (𝐴(,)𝐵) ≼ ℕ) |
14 | rectbntr0 23993 | . . . 4 ⊢ (((𝐴(,)𝐵) ⊆ ℝ ∧ (𝐴(,)𝐵) ≼ ℕ) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ∅) | |
15 | 4, 13, 14 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ∅) |
16 | 2, 15 | eqtr3d 2780 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → (𝐴(,)𝐵) = ∅) |
17 | ioonct.l | . . . . 5 ⊢ (𝜑 → 𝐴 < 𝐵) | |
18 | ioonct.b | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
19 | ioonct.c | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
20 | ioon0 13103 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵)) | |
21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵)) |
22 | 17, 21 | mpbird 256 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐵) ≠ ∅) |
23 | 22 | neneqd 2948 | . . 3 ⊢ (𝜑 → ¬ (𝐴(,)𝐵) = ∅) |
24 | 23 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≼ ω) → ¬ (𝐴(,)𝐵) = ∅) |
25 | 16, 24 | pm2.65da 814 | 1 ⊢ (𝜑 → ¬ 𝐶 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3888 ∅c0 4258 class class class wbr 5076 ran crn 5592 ‘cfv 6435 (class class class)co 7277 ωcom 7712 ≈ cen 8728 ≼ cdom 8729 ℝcr 10868 ℝ*cxr 11006 < clt 11007 ℕcn 11971 (,)cioo 13077 topGenctg 17146 intcnt 22166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-inf2 9397 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-pre-sup 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-isom 6444 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-2o 8296 df-oadd 8299 df-omul 8300 df-er 8496 df-map 8615 df-pm 8616 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-sup 9199 df-inf 9200 df-oi 9267 df-card 9695 df-acn 9698 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-n0 12232 df-z 12318 df-uz 12581 df-q 12687 df-rp 12729 df-xneg 12846 df-xadd 12847 df-xmul 12848 df-ioo 13081 df-ico 13083 df-icc 13084 df-fz 13238 df-fzo 13381 df-fl 13510 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-top 22041 df-topon 22058 df-bases 22094 df-ntr 22169 |
This theorem is referenced by: iocnct 43048 iccnct 43049 |
Copyright terms: Public domain | W3C validator |