| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lflset.v | . . . 4
⊢ 𝑉 = (Base‘𝑊) | 
| 2 |  | lflset.a | . . . 4
⊢  + =
(+g‘𝑊) | 
| 3 |  | lflset.d | . . . 4
⊢ 𝐷 = (Scalar‘𝑊) | 
| 4 |  | lflset.s | . . . 4
⊢  · = (
·𝑠 ‘𝑊) | 
| 5 |  | lflset.k | . . . 4
⊢ 𝐾 = (Base‘𝐷) | 
| 6 |  | lflset.p | . . . 4
⊢  ⨣ =
(+g‘𝐷) | 
| 7 |  | lflset.t | . . . 4
⊢  × =
(.r‘𝐷) | 
| 8 |  | lflset.f | . . . 4
⊢ 𝐹 = (LFnl‘𝑊) | 
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lflset 39060 | . . 3
⊢ (𝑊 ∈ 𝑋 → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) | 
| 10 | 9 | eleq2d 2827 | . 2
⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ 𝐺 ∈ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))})) | 
| 11 |  | fveq1 6905 | . . . . . . 7
⊢ (𝑓 = 𝐺 → (𝑓‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑟 · 𝑥) + 𝑦))) | 
| 12 |  | fveq1 6905 | . . . . . . . . 9
⊢ (𝑓 = 𝐺 → (𝑓‘𝑥) = (𝐺‘𝑥)) | 
| 13 | 12 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑓 = 𝐺 → (𝑟 × (𝑓‘𝑥)) = (𝑟 × (𝐺‘𝑥))) | 
| 14 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑓 = 𝐺 → (𝑓‘𝑦) = (𝐺‘𝑦)) | 
| 15 | 13, 14 | oveq12d 7449 | . . . . . . 7
⊢ (𝑓 = 𝐺 → ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))) | 
| 16 | 11, 15 | eqeq12d 2753 | . . . . . 6
⊢ (𝑓 = 𝐺 → ((𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)) ↔ (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) | 
| 17 | 16 | 2ralbidv 3221 | . . . . 5
⊢ (𝑓 = 𝐺 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) | 
| 18 | 17 | ralbidv 3178 | . . . 4
⊢ (𝑓 = 𝐺 → (∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)) ↔ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) | 
| 19 | 18 | elrab 3692 | . . 3
⊢ (𝐺 ∈ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))} ↔ (𝐺 ∈ (𝐾 ↑m 𝑉) ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) | 
| 20 | 5 | fvexi 6920 | . . . . 5
⊢ 𝐾 ∈ V | 
| 21 | 1 | fvexi 6920 | . . . . 5
⊢ 𝑉 ∈ V | 
| 22 | 20, 21 | elmap 8911 | . . . 4
⊢ (𝐺 ∈ (𝐾 ↑m 𝑉) ↔ 𝐺:𝑉⟶𝐾) | 
| 23 | 22 | anbi1i 624 | . . 3
⊢ ((𝐺 ∈ (𝐾 ↑m 𝑉) ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))) ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) | 
| 24 | 19, 23 | bitri 275 | . 2
⊢ (𝐺 ∈ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))} ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) | 
| 25 | 10, 24 | bitrdi 287 | 1
⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))))) |