Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islfl Structured version   Visualization version   GIF version

Theorem islfl 36211
Description: The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Base‘𝑊)
lflset.a + = (+g𝑊)
lflset.d 𝐷 = (Scalar‘𝑊)
lflset.s · = ( ·𝑠𝑊)
lflset.k 𝐾 = (Base‘𝐷)
lflset.p = (+g𝐷)
lflset.t × = (.r𝐷)
lflset.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
islfl (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
Distinct variable groups:   𝐾,𝑟   𝑥,𝑦,𝑉   𝑥,𝑟,𝑦,𝑊   𝐺,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑟)   + (𝑥,𝑦,𝑟)   (𝑥,𝑦,𝑟)   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝐾(𝑥,𝑦)   𝑉(𝑟)   𝑋(𝑥,𝑦,𝑟)

Proof of Theorem islfl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . 4 𝑉 = (Base‘𝑊)
2 lflset.a . . . 4 + = (+g𝑊)
3 lflset.d . . . 4 𝐷 = (Scalar‘𝑊)
4 lflset.s . . . 4 · = ( ·𝑠𝑊)
5 lflset.k . . . 4 𝐾 = (Base‘𝐷)
6 lflset.p . . . 4 = (+g𝐷)
7 lflset.t . . . 4 × = (.r𝐷)
8 lflset.f . . . 4 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8lflset 36210 . . 3 (𝑊𝑋𝐹 = {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))})
109eleq2d 2898 . 2 (𝑊𝑋 → (𝐺𝐹𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))}))
11 fveq1 6669 . . . . . . 7 (𝑓 = 𝐺 → (𝑓‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑟 · 𝑥) + 𝑦)))
12 fveq1 6669 . . . . . . . . 9 (𝑓 = 𝐺 → (𝑓𝑥) = (𝐺𝑥))
1312oveq2d 7172 . . . . . . . 8 (𝑓 = 𝐺 → (𝑟 × (𝑓𝑥)) = (𝑟 × (𝐺𝑥)))
14 fveq1 6669 . . . . . . . 8 (𝑓 = 𝐺 → (𝑓𝑦) = (𝐺𝑦))
1513, 14oveq12d 7174 . . . . . . 7 (𝑓 = 𝐺 → ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
1611, 15eqeq12d 2837 . . . . . 6 (𝑓 = 𝐺 → ((𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
17162ralbidv 3199 . . . . 5 (𝑓 = 𝐺 → (∀𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ ∀𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
1817ralbidv 3197 . . . 4 (𝑓 = 𝐺 → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
1918elrab 3680 . . 3 (𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))} ↔ (𝐺 ∈ (𝐾m 𝑉) ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
205fvexi 6684 . . . . 5 𝐾 ∈ V
211fvexi 6684 . . . . 5 𝑉 ∈ V
2220, 21elmap 8435 . . . 4 (𝐺 ∈ (𝐾m 𝑉) ↔ 𝐺:𝑉𝐾)
2322anbi1i 625 . . 3 ((𝐺 ∈ (𝐾m 𝑉) ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))) ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
2419, 23bitri 277 . 2 (𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))} ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
2510, 24syl6bb 289 1 (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  {crab 3142  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  LFnlclfn 36208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-lfl 36209
This theorem is referenced by:  lfli  36212  islfld  36213  lflf  36214  lfl0f  36220  lfladdcl  36222  lflnegcl  36226  lshpkrcl  36267
  Copyright terms: Public domain W3C validator