Step | Hyp | Ref
| Expression |
1 | | lflset.v |
. . . 4
⊢ 𝑉 = (Base‘𝑊) |
2 | | lflset.a |
. . . 4
⊢ + =
(+g‘𝑊) |
3 | | lflset.d |
. . . 4
⊢ 𝐷 = (Scalar‘𝑊) |
4 | | lflset.s |
. . . 4
⊢ · = (
·𝑠 ‘𝑊) |
5 | | lflset.k |
. . . 4
⊢ 𝐾 = (Base‘𝐷) |
6 | | lflset.p |
. . . 4
⊢ ⨣ =
(+g‘𝐷) |
7 | | lflset.t |
. . . 4
⊢ × =
(.r‘𝐷) |
8 | | lflset.f |
. . . 4
⊢ 𝐹 = (LFnl‘𝑊) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lflset 37000 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |
10 | 9 | eleq2d 2824 |
. 2
⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ 𝐺 ∈ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))})) |
11 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑓 = 𝐺 → (𝑓‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑟 · 𝑥) + 𝑦))) |
12 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = 𝐺 → (𝑓‘𝑥) = (𝐺‘𝑥)) |
13 | 12 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑓 = 𝐺 → (𝑟 × (𝑓‘𝑥)) = (𝑟 × (𝐺‘𝑥))) |
14 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = 𝐺 → (𝑓‘𝑦) = (𝐺‘𝑦)) |
15 | 13, 14 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑓 = 𝐺 → ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))) |
16 | 11, 15 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑓 = 𝐺 → ((𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)) ↔ (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) |
17 | 16 | 2ralbidv 3122 |
. . . . 5
⊢ (𝑓 = 𝐺 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) |
18 | 17 | ralbidv 3120 |
. . . 4
⊢ (𝑓 = 𝐺 → (∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)) ↔ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) |
19 | 18 | elrab 3617 |
. . 3
⊢ (𝐺 ∈ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))} ↔ (𝐺 ∈ (𝐾 ↑m 𝑉) ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) |
20 | 5 | fvexi 6770 |
. . . . 5
⊢ 𝐾 ∈ V |
21 | 1 | fvexi 6770 |
. . . . 5
⊢ 𝑉 ∈ V |
22 | 20, 21 | elmap 8617 |
. . . 4
⊢ (𝐺 ∈ (𝐾 ↑m 𝑉) ↔ 𝐺:𝑉⟶𝐾) |
23 | 22 | anbi1i 623 |
. . 3
⊢ ((𝐺 ∈ (𝐾 ↑m 𝑉) ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))) ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) |
24 | 19, 23 | bitri 274 |
. 2
⊢ (𝐺 ∈ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))} ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)))) |
25 | 10, 24 | bitrdi 286 |
1
⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))))) |