Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islfl Structured version   Visualization version   GIF version

Theorem islfl 37001
Description: The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Base‘𝑊)
lflset.a + = (+g𝑊)
lflset.d 𝐷 = (Scalar‘𝑊)
lflset.s · = ( ·𝑠𝑊)
lflset.k 𝐾 = (Base‘𝐷)
lflset.p = (+g𝐷)
lflset.t × = (.r𝐷)
lflset.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
islfl (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
Distinct variable groups:   𝐾,𝑟   𝑥,𝑦,𝑉   𝑥,𝑟,𝑦,𝑊   𝐺,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑟)   + (𝑥,𝑦,𝑟)   (𝑥,𝑦,𝑟)   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝐾(𝑥,𝑦)   𝑉(𝑟)   𝑋(𝑥,𝑦,𝑟)

Proof of Theorem islfl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . 4 𝑉 = (Base‘𝑊)
2 lflset.a . . . 4 + = (+g𝑊)
3 lflset.d . . . 4 𝐷 = (Scalar‘𝑊)
4 lflset.s . . . 4 · = ( ·𝑠𝑊)
5 lflset.k . . . 4 𝐾 = (Base‘𝐷)
6 lflset.p . . . 4 = (+g𝐷)
7 lflset.t . . . 4 × = (.r𝐷)
8 lflset.f . . . 4 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8lflset 37000 . . 3 (𝑊𝑋𝐹 = {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))})
109eleq2d 2824 . 2 (𝑊𝑋 → (𝐺𝐹𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))}))
11 fveq1 6755 . . . . . . 7 (𝑓 = 𝐺 → (𝑓‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑟 · 𝑥) + 𝑦)))
12 fveq1 6755 . . . . . . . . 9 (𝑓 = 𝐺 → (𝑓𝑥) = (𝐺𝑥))
1312oveq2d 7271 . . . . . . . 8 (𝑓 = 𝐺 → (𝑟 × (𝑓𝑥)) = (𝑟 × (𝐺𝑥)))
14 fveq1 6755 . . . . . . . 8 (𝑓 = 𝐺 → (𝑓𝑦) = (𝐺𝑦))
1513, 14oveq12d 7273 . . . . . . 7 (𝑓 = 𝐺 → ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
1611, 15eqeq12d 2754 . . . . . 6 (𝑓 = 𝐺 → ((𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
17162ralbidv 3122 . . . . 5 (𝑓 = 𝐺 → (∀𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ ∀𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
1817ralbidv 3120 . . . 4 (𝑓 = 𝐺 → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
1918elrab 3617 . . 3 (𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))} ↔ (𝐺 ∈ (𝐾m 𝑉) ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
205fvexi 6770 . . . . 5 𝐾 ∈ V
211fvexi 6770 . . . . 5 𝑉 ∈ V
2220, 21elmap 8617 . . . 4 (𝐺 ∈ (𝐾m 𝑉) ↔ 𝐺:𝑉𝐾)
2322anbi1i 623 . . 3 ((𝐺 ∈ (𝐾m 𝑉) ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))) ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
2419, 23bitri 274 . 2 (𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))} ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
2510, 24bitrdi 286 1 (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  LFnlclfn 36998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-lfl 36999
This theorem is referenced by:  lfli  37002  islfld  37003  lflf  37004  lfl0f  37010  lfladdcl  37012  lflnegcl  37016  lshpkrcl  37057
  Copyright terms: Public domain W3C validator