Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islfl Structured version   Visualization version   GIF version

Theorem islfl 38396
Description: The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Base‘𝑊)
lflset.a + = (+g𝑊)
lflset.d 𝐷 = (Scalar‘𝑊)
lflset.s · = ( ·𝑠𝑊)
lflset.k 𝐾 = (Base‘𝐷)
lflset.p = (+g𝐷)
lflset.t × = (.r𝐷)
lflset.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
islfl (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
Distinct variable groups:   𝐾,𝑟   𝑥,𝑦,𝑉   𝑥,𝑟,𝑦,𝑊   𝐺,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑟)   + (𝑥,𝑦,𝑟)   (𝑥,𝑦,𝑟)   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝐾(𝑥,𝑦)   𝑉(𝑟)   𝑋(𝑥,𝑦,𝑟)

Proof of Theorem islfl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . 4 𝑉 = (Base‘𝑊)
2 lflset.a . . . 4 + = (+g𝑊)
3 lflset.d . . . 4 𝐷 = (Scalar‘𝑊)
4 lflset.s . . . 4 · = ( ·𝑠𝑊)
5 lflset.k . . . 4 𝐾 = (Base‘𝐷)
6 lflset.p . . . 4 = (+g𝐷)
7 lflset.t . . . 4 × = (.r𝐷)
8 lflset.f . . . 4 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8lflset 38395 . . 3 (𝑊𝑋𝐹 = {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))})
109eleq2d 2818 . 2 (𝑊𝑋 → (𝐺𝐹𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))}))
11 fveq1 6890 . . . . . . 7 (𝑓 = 𝐺 → (𝑓‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑟 · 𝑥) + 𝑦)))
12 fveq1 6890 . . . . . . . . 9 (𝑓 = 𝐺 → (𝑓𝑥) = (𝐺𝑥))
1312oveq2d 7428 . . . . . . . 8 (𝑓 = 𝐺 → (𝑟 × (𝑓𝑥)) = (𝑟 × (𝐺𝑥)))
14 fveq1 6890 . . . . . . . 8 (𝑓 = 𝐺 → (𝑓𝑦) = (𝐺𝑦))
1513, 14oveq12d 7430 . . . . . . 7 (𝑓 = 𝐺 → ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
1611, 15eqeq12d 2747 . . . . . 6 (𝑓 = 𝐺 → ((𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
17162ralbidv 3217 . . . . 5 (𝑓 = 𝐺 → (∀𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ ∀𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
1817ralbidv 3176 . . . 4 (𝑓 = 𝐺 → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦)) ↔ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
1918elrab 3683 . . 3 (𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))} ↔ (𝐺 ∈ (𝐾m 𝑉) ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
205fvexi 6905 . . . . 5 𝐾 ∈ V
211fvexi 6905 . . . . 5 𝑉 ∈ V
2220, 21elmap 8871 . . . 4 (𝐺 ∈ (𝐾m 𝑉) ↔ 𝐺:𝑉𝐾)
2322anbi1i 623 . . 3 ((𝐺 ∈ (𝐾m 𝑉) ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))) ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
2419, 23bitri 275 . 2 (𝐺 ∈ {𝑓 ∈ (𝐾m 𝑉) ∣ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓𝑥)) (𝑓𝑦))} ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦))))
2510, 24bitrdi 287 1 (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  {crab 3431  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8826  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  Scalarcsca 17207   ·𝑠 cvsca 17208  LFnlclfn 38393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-lfl 38394
This theorem is referenced by:  lfli  38397  islfld  38398  lflf  38399  lfl0f  38405  lfladdcl  38407  lflnegcl  38411  lshpkrcl  38452
  Copyright terms: Public domain W3C validator