MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfval Structured version   Visualization version   GIF version

Theorem lgsfval 25890
Description: Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsfval (𝑀 ∈ ℕ → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsfval
StepHypRef Expression
1 eleq1 2880 . . 3 (𝑛 = 𝑀 → (𝑛 ∈ ℙ ↔ 𝑀 ∈ ℙ))
2 eqeq1 2805 . . . . 5 (𝑛 = 𝑀 → (𝑛 = 2 ↔ 𝑀 = 2))
3 oveq1 7146 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛 − 1) = (𝑀 − 1))
43oveq1d 7154 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝑛 − 1) / 2) = ((𝑀 − 1) / 2))
54oveq2d 7155 . . . . . . . 8 (𝑛 = 𝑀 → (𝐴↑((𝑛 − 1) / 2)) = (𝐴↑((𝑀 − 1) / 2)))
65oveq1d 7154 . . . . . . 7 (𝑛 = 𝑀 → ((𝐴↑((𝑛 − 1) / 2)) + 1) = ((𝐴↑((𝑀 − 1) / 2)) + 1))
7 id 22 . . . . . . 7 (𝑛 = 𝑀𝑛 = 𝑀)
86, 7oveq12d 7157 . . . . . 6 (𝑛 = 𝑀 → (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀))
98oveq1d 7154 . . . . 5 (𝑛 = 𝑀 → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))
102, 9ifbieq2d 4453 . . . 4 (𝑛 = 𝑀 → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) = if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)))
11 oveq1 7146 . . . 4 (𝑛 = 𝑀 → (𝑛 pCnt 𝑁) = (𝑀 pCnt 𝑁))
1210, 11oveq12d 7157 . . 3 (𝑛 = 𝑀 → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) = (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)))
131, 12ifbieq1d 4451 . 2 (𝑛 = 𝑀 → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
14 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
15 ovex 7172 . . 3 (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)) ∈ V
16 1ex 10630 . . 3 1 ∈ V
1715, 16ifex 4476 . 2 if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1) ∈ V
1813, 14, 17fvmpt 6749 1 (𝑀 ∈ ℕ → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  ifcif 4428  {cpr 4530   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   + caddc 10533  cmin 10863  -cneg 10864   / cdiv 11290  cn 11629  2c2 11684  7c7 11689  8c8 11690   mod cmo 13236  cexp 13429  cdvds 15603  cprime 16009   pCnt cpc 16167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-1cn 10588
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7142
This theorem is referenced by:  lgsval2lem  25895
  Copyright terms: Public domain W3C validator