MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfval Structured version   Visualization version   GIF version

Theorem lgsfval 27213
Description: Value of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsfval (𝑀 ∈ ℕ → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsfval
StepHypRef Expression
1 eleq1 2816 . . 3 (𝑛 = 𝑀 → (𝑛 ∈ ℙ ↔ 𝑀 ∈ ℙ))
2 eqeq1 2733 . . . . 5 (𝑛 = 𝑀 → (𝑛 = 2 ↔ 𝑀 = 2))
3 oveq1 7394 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛 − 1) = (𝑀 − 1))
43oveq1d 7402 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝑛 − 1) / 2) = ((𝑀 − 1) / 2))
54oveq2d 7403 . . . . . . . 8 (𝑛 = 𝑀 → (𝐴↑((𝑛 − 1) / 2)) = (𝐴↑((𝑀 − 1) / 2)))
65oveq1d 7402 . . . . . . 7 (𝑛 = 𝑀 → ((𝐴↑((𝑛 − 1) / 2)) + 1) = ((𝐴↑((𝑀 − 1) / 2)) + 1))
7 id 22 . . . . . . 7 (𝑛 = 𝑀𝑛 = 𝑀)
86, 7oveq12d 7405 . . . . . 6 (𝑛 = 𝑀 → (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀))
98oveq1d 7402 . . . . 5 (𝑛 = 𝑀 → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))
102, 9ifbieq2d 4515 . . . 4 (𝑛 = 𝑀 → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) = if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1)))
11 oveq1 7394 . . . 4 (𝑛 = 𝑀 → (𝑛 pCnt 𝑁) = (𝑀 pCnt 𝑁))
1210, 11oveq12d 7405 . . 3 (𝑛 = 𝑀 → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) = (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)))
131, 12ifbieq1d 4513 . 2 (𝑛 = 𝑀 → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
14 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
15 ovex 7420 . . 3 (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)) ∈ V
16 1ex 11170 . . 3 1 ∈ V
1715, 16ifex 4539 . 2 if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1) ∈ V
1813, 14, 17fvmpt 6968 1 (𝑀 ∈ ℕ → (𝐹𝑀) = if(𝑀 ∈ ℙ, (if(𝑀 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑀 − 1) / 2)) + 1) mod 𝑀) − 1))↑(𝑀 pCnt 𝑁)), 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ifcif 4488  {cpr 4591   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  7c7 12246  8c8 12247   mod cmo 13831  cexp 14026  cdvds 16222  cprime 16641   pCnt cpc 16807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-1cn 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390
This theorem is referenced by:  lgsval2lem  27218
  Copyright terms: Public domain W3C validator