MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfcl2 Structured version   Visualization version   GIF version

Theorem lgsfcl2 26651
Description: The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 26644). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
lgsfcl2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgsfcl2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑥,𝐹   𝑛,𝑁,𝑥   𝑛,𝑍
Allowed substitution hints:   𝐹(𝑛)   𝑍(𝑥)

Proof of Theorem lgsfcl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12510 . . . . . . . 8 0 ∈ ℤ
2 0le1 11678 . . . . . . . 8 0 ≤ 1
3 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
4 abs0 15170 . . . . . . . . . . 11 (abs‘0) = 0
53, 4eqtrdi 2792 . . . . . . . . . 10 (𝑥 = 0 → (abs‘𝑥) = 0)
65breq1d 5115 . . . . . . . . 9 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
7 lgsfcl2.z . . . . . . . . 9 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
86, 7elrab2 3648 . . . . . . . 8 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
91, 2, 8mpbir2an 709 . . . . . . 7 0 ∈ 𝑍
10 1z 12533 . . . . . . . . 9 1 ∈ ℤ
11 1le1 11783 . . . . . . . . 9 1 ≤ 1
12 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
13 abs1 15182 . . . . . . . . . . . 12 (abs‘1) = 1
1412, 13eqtrdi 2792 . . . . . . . . . . 11 (𝑥 = 1 → (abs‘𝑥) = 1)
1514breq1d 5115 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
1615, 7elrab2 3648 . . . . . . . . 9 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
1710, 11, 16mpbir2an 709 . . . . . . . 8 1 ∈ 𝑍
18 neg1z 12539 . . . . . . . . 9 -1 ∈ ℤ
19 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
20 ax-1cn 11109 . . . . . . . . . . . . . 14 1 ∈ ℂ
2120absnegi 15285 . . . . . . . . . . . . 13 (abs‘-1) = (abs‘1)
2221, 13eqtri 2764 . . . . . . . . . . . 12 (abs‘-1) = 1
2319, 22eqtrdi 2792 . . . . . . . . . . 11 (𝑥 = -1 → (abs‘𝑥) = 1)
2423breq1d 5115 . . . . . . . . . 10 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 7elrab2 3648 . . . . . . . . 9 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
2618, 11, 25mpbir2an 709 . . . . . . . 8 -1 ∈ 𝑍
2717, 26ifcli 4533 . . . . . . 7 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ 𝑍
289, 27ifcli 4533 . . . . . 6 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍
2928a1i 11 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ 𝑛 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍)
30 simpl1 1191 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℤ)
3130ad2antrr 724 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝐴 ∈ ℤ)
32 simplr 767 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ ℙ)
33 simpr 485 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
3433neqned 2950 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ≠ 2)
35 eldifsn 4747 . . . . . . 7 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
3632, 34, 35sylanbrc 583 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ (ℙ ∖ {2}))
377lgslem4 26648 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3831, 36, 37syl2anc 584 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3929, 38ifclda 4521 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍)
40 simpr 485 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
41 simpll2 1213 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℤ)
42 simpll3 1214 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ≠ 0)
43 pczcl 16720 . . . . 5 ((𝑛 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑛 pCnt 𝑁) ∈ ℕ0)
4440, 41, 42, 43syl12anc 835 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
457ssrab3 4040 . . . . . 6 𝑍 ⊆ ℤ
46 zsscn 12507 . . . . . 6 ℤ ⊆ ℂ
4745, 46sstri 3953 . . . . 5 𝑍 ⊆ ℂ
487lgslem3 26647 . . . . 5 ((𝑎𝑍𝑏𝑍) → (𝑎 · 𝑏) ∈ 𝑍)
4947, 48, 17expcllem 13978 . . . 4 ((if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍 ∧ (𝑛 pCnt 𝑁) ∈ ℕ0) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5039, 44, 49syl2anc 584 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5117a1i 11 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ ℙ) → 1 ∈ 𝑍)
5250, 51ifclda 4521 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) ∈ 𝑍)
53 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
5452, 53fmptd 7062 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  {crab 3407  cdif 3907  ifcif 4486  {csn 4586  {cpr 4588   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  7c7 12213  8c8 12214  0cn0 12413  cz 12499   mod cmo 13774  cexp 13967  abscabs 15119  cdvds 16136  cprime 16547   pCnt cpc 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-phi 16638  df-pc 16709
This theorem is referenced by:  lgscllem  26652  lgsfcl  26653  lgsfle1  26654
  Copyright terms: Public domain W3C validator