MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfcl2 Structured version   Visualization version   GIF version

Theorem lgsfcl2 25379
Description: The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 25372). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
lgsfcl2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgsfcl2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑥,𝐹   𝑛,𝑁,𝑥   𝑛,𝑍
Allowed substitution hints:   𝐹(𝑛)   𝑍(𝑥)

Proof of Theorem lgsfcl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 11676 . . . . . . . 8 0 ∈ ℤ
2 0le1 10844 . . . . . . . 8 0 ≤ 1
3 fveq2 6412 . . . . . . . . . . 11 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
4 abs0 14365 . . . . . . . . . . 11 (abs‘0) = 0
53, 4syl6eq 2850 . . . . . . . . . 10 (𝑥 = 0 → (abs‘𝑥) = 0)
65breq1d 4854 . . . . . . . . 9 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
7 lgsfcl2.z . . . . . . . . 9 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
86, 7elrab2 3561 . . . . . . . 8 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
91, 2, 8mpbir2an 703 . . . . . . 7 0 ∈ 𝑍
10 1z 11696 . . . . . . . . 9 1 ∈ ℤ
11 1le1 10948 . . . . . . . . 9 1 ≤ 1
12 fveq2 6412 . . . . . . . . . . . 12 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
13 abs1 14377 . . . . . . . . . . . 12 (abs‘1) = 1
1412, 13syl6eq 2850 . . . . . . . . . . 11 (𝑥 = 1 → (abs‘𝑥) = 1)
1514breq1d 4854 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
1615, 7elrab2 3561 . . . . . . . . 9 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
1710, 11, 16mpbir2an 703 . . . . . . . 8 1 ∈ 𝑍
18 neg1z 11702 . . . . . . . . 9 -1 ∈ ℤ
19 fveq2 6412 . . . . . . . . . . . 12 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
20 ax-1cn 10283 . . . . . . . . . . . . . 14 1 ∈ ℂ
2120absnegi 14479 . . . . . . . . . . . . 13 (abs‘-1) = (abs‘1)
2221, 13eqtri 2822 . . . . . . . . . . . 12 (abs‘-1) = 1
2319, 22syl6eq 2850 . . . . . . . . . . 11 (𝑥 = -1 → (abs‘𝑥) = 1)
2423breq1d 4854 . . . . . . . . . 10 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 7elrab2 3561 . . . . . . . . 9 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
2618, 11, 25mpbir2an 703 . . . . . . . 8 -1 ∈ 𝑍
2717, 26ifcli 4324 . . . . . . 7 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ 𝑍
289, 27ifcli 4324 . . . . . 6 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍
2928a1i 11 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ 𝑛 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍)
30 simpl1 1243 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℤ)
3130ad2antrr 718 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝐴 ∈ ℤ)
32 simplr 786 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ ℙ)
33 simpr 478 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
3433neqned 2979 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ≠ 2)
35 eldifsn 4507 . . . . . . 7 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
3632, 34, 35sylanbrc 579 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ (ℙ ∖ {2}))
377lgslem4 25376 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3831, 36, 37syl2anc 580 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3929, 38ifclda 4312 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍)
40 simpr 478 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
41 simpll2 1272 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℤ)
42 simpll3 1274 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ≠ 0)
43 pczcl 15885 . . . . 5 ((𝑛 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑛 pCnt 𝑁) ∈ ℕ0)
4440, 41, 42, 43syl12anc 866 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
45 ssrab2 3884 . . . . . . 7 {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⊆ ℤ
467, 45eqsstri 3832 . . . . . 6 𝑍 ⊆ ℤ
47 zsscn 11673 . . . . . 6 ℤ ⊆ ℂ
4846, 47sstri 3808 . . . . 5 𝑍 ⊆ ℂ
497lgslem3 25375 . . . . 5 ((𝑎𝑍𝑏𝑍) → (𝑎 · 𝑏) ∈ 𝑍)
5048, 49, 17expcllem 13124 . . . 4 ((if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍 ∧ (𝑛 pCnt 𝑁) ∈ ℕ0) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5139, 44, 50syl2anc 580 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5217a1i 11 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ ℙ) → 1 ∈ 𝑍)
5351, 52ifclda 4312 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) ∈ 𝑍)
54 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
5553, 54fmptd 6611 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2972  {crab 3094  cdif 3767  ifcif 4278  {csn 4369  {cpr 4371   class class class wbr 4844  cmpt 4923  wf 6098  cfv 6102  (class class class)co 6879  cc 10223  0cc0 10225  1c1 10226   + caddc 10228  cle 10365  cmin 10557  -cneg 10558   / cdiv 10977  cn 11313  2c2 11367  7c7 11372  8c8 11373  0cn0 11579  cz 11665   mod cmo 12922  cexp 13113  abscabs 14314  cdvds 15318  cprime 15718   pCnt cpc 15873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-sup 8591  df-inf 8592  df-card 9052  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-n0 11580  df-xnn0 11652  df-z 11666  df-uz 11930  df-q 12033  df-rp 12074  df-fz 12580  df-fzo 12720  df-fl 12847  df-mod 12923  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-dvds 15319  df-gcd 15551  df-prm 15719  df-phi 15803  df-pc 15874
This theorem is referenced by:  lgscllem  25380  lgsfcl  25381  lgsfle1  25382
  Copyright terms: Public domain W3C validator