MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfcl2 Structured version   Visualization version   GIF version

Theorem lgsfcl2 27361
Description: The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 27354). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
lgsfcl2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgsfcl2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑥,𝐹   𝑛,𝑁,𝑥   𝑛,𝑍
Allowed substitution hints:   𝐹(𝑛)   𝑍(𝑥)

Proof of Theorem lgsfcl2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12621 . . . . . . . 8 0 ∈ ℤ
2 0le1 11783 . . . . . . . 8 0 ≤ 1
3 fveq2 6906 . . . . . . . . . . 11 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
4 abs0 15320 . . . . . . . . . . 11 (abs‘0) = 0
53, 4eqtrdi 2790 . . . . . . . . . 10 (𝑥 = 0 → (abs‘𝑥) = 0)
65breq1d 5157 . . . . . . . . 9 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
7 lgsfcl2.z . . . . . . . . 9 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
86, 7elrab2 3697 . . . . . . . 8 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
91, 2, 8mpbir2an 711 . . . . . . 7 0 ∈ 𝑍
10 1z 12644 . . . . . . . . 9 1 ∈ ℤ
11 1le1 11888 . . . . . . . . 9 1 ≤ 1
12 fveq2 6906 . . . . . . . . . . . 12 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
13 abs1 15332 . . . . . . . . . . . 12 (abs‘1) = 1
1412, 13eqtrdi 2790 . . . . . . . . . . 11 (𝑥 = 1 → (abs‘𝑥) = 1)
1514breq1d 5157 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
1615, 7elrab2 3697 . . . . . . . . 9 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
1710, 11, 16mpbir2an 711 . . . . . . . 8 1 ∈ 𝑍
18 neg1z 12650 . . . . . . . . 9 -1 ∈ ℤ
19 fveq2 6906 . . . . . . . . . . . 12 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
20 ax-1cn 11210 . . . . . . . . . . . . . 14 1 ∈ ℂ
2120absnegi 15435 . . . . . . . . . . . . 13 (abs‘-1) = (abs‘1)
2221, 13eqtri 2762 . . . . . . . . . . . 12 (abs‘-1) = 1
2319, 22eqtrdi 2790 . . . . . . . . . . 11 (𝑥 = -1 → (abs‘𝑥) = 1)
2423breq1d 5157 . . . . . . . . . 10 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 7elrab2 3697 . . . . . . . . 9 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
2618, 11, 25mpbir2an 711 . . . . . . . 8 -1 ∈ 𝑍
2717, 26ifcli 4577 . . . . . . 7 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ 𝑍
289, 27ifcli 4577 . . . . . 6 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍
2928a1i 11 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ 𝑛 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍)
30 simpl1 1190 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℤ)
3130ad2antrr 726 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝐴 ∈ ℤ)
32 simplr 769 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ ℙ)
33 simpr 484 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
3433neqned 2944 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ≠ 2)
35 eldifsn 4790 . . . . . . 7 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
3632, 34, 35sylanbrc 583 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → 𝑛 ∈ (ℙ ∖ {2}))
377lgslem4 27358 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3831, 36, 37syl2anc 584 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛 = 2) → ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍)
3929, 38ifclda 4565 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍)
40 simpr 484 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
41 simpll2 1212 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℤ)
42 simpll3 1213 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ≠ 0)
43 pczcl 16881 . . . . 5 ((𝑛 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑛 pCnt 𝑁) ∈ ℕ0)
4440, 41, 42, 43syl12anc 837 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
457ssrab3 4091 . . . . . 6 𝑍 ⊆ ℤ
46 zsscn 12618 . . . . . 6 ℤ ⊆ ℂ
4745, 46sstri 4004 . . . . 5 𝑍 ⊆ ℂ
487lgslem3 27357 . . . . 5 ((𝑎𝑍𝑏𝑍) → (𝑎 · 𝑏) ∈ 𝑍)
4947, 48, 17expcllem 14109 . . . 4 ((if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍 ∧ (𝑛 pCnt 𝑁) ∈ ℕ0) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5039, 44, 49syl2anc 584 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍)
5117a1i 11 . . 3 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ ℙ) → 1 ∈ 𝑍)
5250, 51ifclda 4565 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) ∈ 𝑍)
53 lgsval.1 . 2 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
5452, 53fmptd 7133 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  {crab 3432  cdif 3959  ifcif 4530  {csn 4630  {cpr 4632   class class class wbr 5147  cmpt 5230  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  7c7 12323  8c8 12324  0cn0 12523  cz 12610   mod cmo 13905  cexp 14098  abscabs 15269  cdvds 16286  cprime 16704   pCnt cpc 16869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-prm 16705  df-phi 16799  df-pc 16870
This theorem is referenced by:  lgscllem  27362  lgsfcl  27363  lgsfle1  27364
  Copyright terms: Public domain W3C validator