| Step | Hyp | Ref
| Expression |
| 1 | | prmz 16712 |
. . 3
⊢ (𝑁 ∈ ℙ → 𝑁 ∈
ℤ) |
| 2 | | lgsval.1 |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) |
| 3 | 2 | lgsval 27345 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
𝐹)‘(abs‘𝑁))))) |
| 4 | 1, 3 | sylan2 593 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
𝐹)‘(abs‘𝑁))))) |
| 5 | | prmnn 16711 |
. . . . . 6
⊢ (𝑁 ∈ ℙ → 𝑁 ∈
ℕ) |
| 6 | 5 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈
ℕ) |
| 7 | 6 | nnne0d 12316 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ≠ 0) |
| 8 | 7 | neneqd 2945 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬
𝑁 = 0) |
| 9 | 8 | iffalsed 4536 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
𝐹)‘(abs‘𝑁)))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
𝐹)‘(abs‘𝑁)))) |
| 10 | 6 | nnnn0d 12587 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈
ℕ0) |
| 11 | 10 | nn0ge0d 12590 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 0 ≤
𝑁) |
| 12 | | 0re 11263 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
| 13 | 6 | nnred 12281 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈
ℝ) |
| 14 | | lenlt 11339 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝑁
∈ ℝ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0)) |
| 15 | 12, 13, 14 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (0 ≤
𝑁 ↔ ¬ 𝑁 < 0)) |
| 16 | 11, 15 | mpbid 232 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬
𝑁 < 0) |
| 17 | 16 | intnanrd 489 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬
(𝑁 < 0 ∧ 𝐴 < 0)) |
| 18 | 17 | iffalsed 4536 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) →
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) =
1) |
| 19 | 13, 11 | absidd 15461 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) →
(abs‘𝑁) = 𝑁) |
| 20 | 19 | fveq2d 6910 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1(
· , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁)) |
| 21 | | 1z 12647 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 22 | | prmuz2 16733 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℙ → 𝑁 ∈
(ℤ≥‘2)) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈
(ℤ≥‘2)) |
| 24 | | df-2 12329 |
. . . . . . . . 9
⊢ 2 = (1 +
1) |
| 25 | 24 | fveq2i 6909 |
. . . . . . . 8
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
| 26 | 23, 25 | eleqtrdi 2851 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈
(ℤ≥‘(1 + 1))) |
| 27 | | seqm1 14060 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ 𝑁
∈ (ℤ≥‘(1 + 1))) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹‘𝑁))) |
| 28 | 21, 26, 27 | sylancr 587 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1(
· , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹‘𝑁))) |
| 29 | | 1t1e1 12428 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1
· 1) = 1) |
| 31 | | uz2m1nn 12965 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
| 32 | 23, 31 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈
ℕ) |
| 33 | | nnuz 12921 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 34 | 32, 33 | eleqtrdi 2851 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈
(ℤ≥‘1)) |
| 35 | | elfznn 13593 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 ∈ ℕ) |
| 36 | 35 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ ℕ) |
| 37 | 2 | lgsfval 27346 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℕ → (𝐹‘𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1)) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹‘𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1)) |
| 39 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℤ) |
| 40 | 39 | zred 12722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℝ) |
| 41 | 40 | ltm1d 12200 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) < 𝑁) |
| 42 | | peano2rem 11576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
| 43 | 40, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈ ℝ) |
| 44 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
| 45 | 40, 43, 44 | lensymd 11412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → ¬ (𝑁 − 1) < 𝑁) |
| 46 | 41, 45 | pm2.65i 194 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
𝑁 ∈ (1...(𝑁 − 1)) |
| 47 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1)))) |
| 48 | 46, 47 | mtbiri 327 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑁 → ¬ 𝑥 ∈ (1...(𝑁 − 1))) |
| 49 | 48 | con2i 139 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...(𝑁 − 1)) → ¬ 𝑥 = 𝑁) |
| 50 | 49 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥 = 𝑁) |
| 51 | | prmuz2 16733 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℙ → 𝑥 ∈
(ℤ≥‘2)) |
| 52 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℙ) |
| 53 | | dvdsprm 16740 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℙ) → (𝑥 ∥ 𝑁 ↔ 𝑥 = 𝑁)) |
| 54 | 51, 52, 53 | syl2an2 686 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥 ∥ 𝑁 ↔ 𝑥 = 𝑁)) |
| 55 | 50, 54 | mtbird 325 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥 ∥ 𝑁) |
| 56 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑥 ∈ ℙ) |
| 57 | 6 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℕ) |
| 58 | | pceq0 16909 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥 ∥ 𝑁)) |
| 59 | 56, 57, 58 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥 ∥ 𝑁)) |
| 60 | 55, 59 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥 pCnt 𝑁) = 0) |
| 61 | 60 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0)) |
| 62 | | 0z 12624 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℤ |
| 63 | | neg1z 12653 |
. . . . . . . . . . . . . . . . . . 19
⊢ -1 ∈
ℤ |
| 64 | 21, 63 | ifcli 4573 |
. . . . . . . . . . . . . . . . . 18
⊢ if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
∈ ℤ |
| 65 | 62, 64 | ifcli 4573 |
. . . . . . . . . . . . . . . . 17
⊢ if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
∈ ℤ |
| 66 | 65 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ 𝑥 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈
ℤ) |
| 67 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐴 ∈
ℤ) |
| 68 | 67 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → 𝐴 ∈
ℤ) |
| 69 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → 𝑥 ∈
ℙ) |
| 70 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → ¬ 𝑥 = 2) |
| 71 | 70 | neqned 2947 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → 𝑥 ≠ 2) |
| 72 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ (ℙ ∖ {2})
↔ (𝑥 ∈ ℙ
∧ 𝑥 ≠
2)) |
| 73 | 69, 71, 72 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → 𝑥 ∈ (ℙ ∖
{2})) |
| 74 | | oddprm 16848 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (ℙ ∖ {2})
→ ((𝑥 − 1) / 2)
∈ ℕ) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → ((𝑥 − 1) / 2) ∈
ℕ) |
| 76 | 75 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → ((𝑥 − 1) / 2) ∈
ℕ0) |
| 77 | | zexpcl 14117 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℤ ∧ ((𝑥 − 1) / 2) ∈
ℕ0) → (𝐴↑((𝑥 − 1) / 2)) ∈
ℤ) |
| 78 | 68, 76, 77 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → (𝐴↑((𝑥 − 1) / 2)) ∈
ℤ) |
| 79 | 78 | peano2zd 12725 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → ((𝐴↑((𝑥 − 1) / 2)) + 1) ∈
ℤ) |
| 80 | | prmnn 16711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℙ → 𝑥 ∈
ℕ) |
| 81 | 80 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → 𝑥 ∈
ℕ) |
| 82 | 79, 81 | zmodcld 13932 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈
ℕ0) |
| 83 | 82 | nn0zd 12639 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ) |
| 84 | | peano2zm 12660 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ) |
| 85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬
𝑥 = 2) → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ) |
| 86 | 66, 85 | ifclda 4561 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈
ℤ) |
| 87 | 86 | zcnd 12723 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈
ℂ) |
| 88 | 87 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈
ℂ) |
| 89 | 88 | exp0d 14180 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0) = 1) |
| 90 | 61, 89 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = 1) |
| 91 | 90 | ifeq1da 4557 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = if(𝑥 ∈ ℙ, 1, 1)) |
| 92 | | ifid 4566 |
. . . . . . . . . 10
⊢ if(𝑥 ∈ ℙ, 1, 1) =
1 |
| 93 | 91, 92 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = 1) |
| 94 | 38, 93 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹‘𝑥) = 1) |
| 95 | 30, 34, 94 | seqid3 14087 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1(
· , 𝐹)‘(𝑁 − 1)) =
1) |
| 96 | 95 | oveq1d 7446 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ((seq1(
· , 𝐹)‘(𝑁 − 1)) · (𝐹‘𝑁)) = (1 · (𝐹‘𝑁))) |
| 97 | 1 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈
ℤ) |
| 98 | 2 | lgsfcl 27349 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) |
| 99 | 67, 97, 7, 98 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐹:ℕ⟶ℤ) |
| 100 | 99, 6 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹‘𝑁) ∈ ℤ) |
| 101 | 100 | zcnd 12723 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹‘𝑁) ∈ ℂ) |
| 102 | 101 | mullidd 11279 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1
· (𝐹‘𝑁)) = (𝐹‘𝑁)) |
| 103 | 28, 96, 102 | 3eqtrd 2781 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1(
· , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
| 104 | 20, 103 | eqtrd 2777 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1(
· , 𝐹)‘(abs‘𝑁)) = (𝐹‘𝑁)) |
| 105 | 18, 104 | oveq12d 7449 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) →
(if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1(
· , 𝐹)‘(abs‘𝑁))) = (1 · (𝐹‘𝑁))) |
| 106 | 2 | lgsfval 27346 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1)) |
| 107 | 6, 106 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹‘𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1)) |
| 108 | | iftrue 4531 |
. . . . 5
⊢ (𝑁 ∈ ℙ → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁))) |
| 109 | 108 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁))) |
| 110 | 6 | nncnd 12282 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈
ℂ) |
| 111 | 110 | exp1d 14181 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁↑1) = 𝑁) |
| 112 | 111 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = (𝑁 pCnt 𝑁)) |
| 113 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈
ℙ) |
| 114 | | pcid 16911 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℙ ∧ 1 ∈
ℤ) → (𝑁 pCnt
(𝑁↑1)) =
1) |
| 115 | 113, 21, 114 | sylancl 586 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = 1) |
| 116 | 112, 115 | eqtr3d 2779 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt 𝑁) = 1) |
| 117 | 116 | oveq2d 7447 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) →
(if(𝑁 = 2, if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1)) |
| 118 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → (𝑥 = 2 ↔ 𝑁 = 2)) |
| 119 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1)) |
| 120 | 119 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑁 → ((𝑥 − 1) / 2) = ((𝑁 − 1) / 2)) |
| 121 | 120 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑁 → (𝐴↑((𝑥 − 1) / 2)) = (𝐴↑((𝑁 − 1) / 2))) |
| 122 | 121 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → ((𝐴↑((𝑥 − 1) / 2)) + 1) = ((𝐴↑((𝑁 − 1) / 2)) + 1)) |
| 123 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → 𝑥 = 𝑁) |
| 124 | 122, 123 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) = (((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁)) |
| 125 | 124 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) = ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) |
| 126 | 118, 125 | ifbieq2d 4552 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) |
| 127 | 126 | eleq1d 2826 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ ↔ if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈
ℂ)) |
| 128 | 87 | ralrimiva 3146 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) →
∀𝑥 ∈ ℙ
if(𝑥 = 2, if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈
ℂ) |
| 129 | 127, 128,
113 | rspcdva 3623 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈
ℂ) |
| 130 | 129 | exp1d 14181 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) →
(if(𝑁 = 2, if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) |
| 131 | 117, 130 | eqtrd 2777 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) →
(if(𝑁 = 2, if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) |
| 132 | 107, 109,
131 | 3eqtrd 2781 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹‘𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) |
| 133 | 105, 102,
132 | 3eqtrd 2781 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) →
(if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1(
· , 𝐹)‘(abs‘𝑁))) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) |
| 134 | 4, 9, 133 | 3eqtrd 2781 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) |