MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval2lem Structured version   Visualization version   GIF version

Theorem lgsval2lem 27227
Description: Lemma for lgsval2 27233. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval2lem ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval2lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmz 16637 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
2 lgsval.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
32lgsval 27221 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
41, 3sylan2 592 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
5 prmnn 16636 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
65adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
76nnne0d 12284 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ≠ 0)
87neneqd 2940 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 = 0)
98iffalsed 4535 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
106nnnn0d 12554 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
1110nn0ge0d 12557 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 0 ≤ 𝑁)
12 0re 11238 . . . . . . . 8 0 ∈ ℝ
136nnred 12249 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℝ)
14 lenlt 11314 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1512, 13, 14sylancr 586 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1611, 15mpbid 231 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 < 0)
1716intnanrd 489 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 4535 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
1913, 11absidd 15393 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (abs‘𝑁) = 𝑁)
2019fveq2d 6895 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
21 1z 12614 . . . . . . 7 1 ∈ ℤ
22 prmuz2 16658 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
2322adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘2))
24 df-2 12297 . . . . . . . . 9 2 = (1 + 1)
2524fveq2i 6894 . . . . . . . 8 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2838 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘(1 + 1)))
27 seqm1 14008 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 + 1))) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)))
2821, 26, 27sylancr 586 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)))
29 1t1e1 12396 . . . . . . . . 9 (1 · 1) = 1
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · 1) = 1)
31 uz2m1nn 12929 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
3223, 31syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ ℕ)
33 nnuz 12887 . . . . . . . . 9 ℕ = (ℤ‘1)
3432, 33eleqtrdi 2838 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ (ℤ‘1))
35 elfznn 13554 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 ∈ ℕ)
3635adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ ℕ)
372lgsfval 27222 . . . . . . . . . 10 (𝑥 ∈ ℕ → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
3836, 37syl 17 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
39 elfzelz 13525 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℤ)
4039zred 12688 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℝ)
4140ltm1d 12168 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) < 𝑁)
42 peano2rem 11549 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈ ℝ)
44 elfzle2 13529 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
4540, 43, 44lensymd 11387 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → ¬ (𝑁 − 1) < 𝑁)
4641, 45pm2.65i 193 . . . . . . . . . . . . . . . . . 18 ¬ 𝑁 ∈ (1...(𝑁 − 1))
47 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (𝑥 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
4846, 47mtbiri 327 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ¬ 𝑥 ∈ (1...(𝑁 − 1)))
4948con2i 139 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑁 − 1)) → ¬ 𝑥 = 𝑁)
5049ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥 = 𝑁)
51 prmuz2 16658 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
52 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℙ)
53 dvdsprm 16665 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
5451, 52, 53syl2an2 685 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
5550, 54mtbird 325 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥𝑁)
56 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑥 ∈ ℙ)
576ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℕ)
58 pceq0 16831 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
5956, 57, 58syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
6055, 59mpbird 257 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥 pCnt 𝑁) = 0)
6160oveq2d 7430 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0))
62 0z 12591 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
63 neg1z 12620 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℤ
6421, 63ifcli 4571 . . . . . . . . . . . . . . . . . 18 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℤ
6562, 64ifcli 4571 . . . . . . . . . . . . . . . . 17 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ
6665a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ 𝑥 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
67 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐴 ∈ ℤ)
6867ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝐴 ∈ ℤ)
69 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℙ)
70 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ¬ 𝑥 = 2)
7170neqned 2942 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ≠ 2)
72 eldifsn 4786 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2))
7369, 71, 72sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ (ℙ ∖ {2}))
74 oddprm 16770 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥 − 1) / 2) ∈ ℕ)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ)
7675nnnn0d 12554 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ0)
77 zexpcl 14065 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ ((𝑥 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
7868, 76, 77syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
7978peano2zd 12691 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝐴↑((𝑥 − 1) / 2)) + 1) ∈ ℤ)
80 prmnn 16636 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
8180ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℕ)
8279, 81zmodcld 13881 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℕ0)
8382nn0zd 12606 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ)
84 peano2zm 12627 . . . . . . . . . . . . . . . . 17 ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
8666, 85ifclda 4559 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℤ)
8786zcnd 12689 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
8887adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
8988exp0d 14128 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0) = 1)
9061, 89eqtrd 2767 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = 1)
9190ifeq1da 4555 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = if(𝑥 ∈ ℙ, 1, 1))
92 ifid 4564 . . . . . . . . . 10 if(𝑥 ∈ ℙ, 1, 1) = 1
9391, 92eqtrdi 2783 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = 1)
9438, 93eqtrd 2767 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = 1)
9530, 34, 94seqid3 14035 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(𝑁 − 1)) = 1)
9695oveq1d 7429 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)) = (1 · (𝐹𝑁)))
971adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℤ)
982lgsfcl 27225 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
9967, 97, 7, 98syl3anc 1369 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐹:ℕ⟶ℤ)
10099, 6ffvelcdmd 7089 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
101100zcnd 12689 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℂ)
102101mullidd 11254 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · (𝐹𝑁)) = (𝐹𝑁))
10328, 96, 1023eqtrd 2771 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = (𝐹𝑁))
10420, 103eqtrd 2767 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (𝐹𝑁))
10518, 104oveq12d 7432 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (𝐹𝑁)))
1062lgsfval 27222 . . . . 5 (𝑁 ∈ ℕ → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
1076, 106syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
108 iftrue 4530 . . . . 5 (𝑁 ∈ ℙ → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
109108adantl 481 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
1106nncnd 12250 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ)
111110exp1d 14129 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁↑1) = 𝑁)
112111oveq2d 7430 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = (𝑁 pCnt 𝑁))
113 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℙ)
114 pcid 16833 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑁 pCnt (𝑁↑1)) = 1)
115113, 21, 114sylancl 585 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = 1)
116112, 115eqtr3d 2769 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt 𝑁) = 1)
117116oveq2d 7430 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1))
118 eqeq1 2731 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 = 2 ↔ 𝑁 = 2))
119 oveq1 7421 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
120119oveq1d 7429 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑥 − 1) / 2) = ((𝑁 − 1) / 2))
121120oveq2d 7430 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐴↑((𝑥 − 1) / 2)) = (𝐴↑((𝑁 − 1) / 2)))
122121oveq1d 7429 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐴↑((𝑥 − 1) / 2)) + 1) = ((𝐴↑((𝑁 − 1) / 2)) + 1))
123 id 22 . . . . . . . . . . 11 (𝑥 = 𝑁𝑥 = 𝑁)
124122, 123oveq12d 7432 . . . . . . . . . 10 (𝑥 = 𝑁 → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) = (((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁))
125124oveq1d 7429 . . . . . . . . 9 (𝑥 = 𝑁 → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) = ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))
126118, 125ifbieq2d 4550 . . . . . . . 8 (𝑥 = 𝑁 → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
127126eleq1d 2813 . . . . . . 7 (𝑥 = 𝑁 → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ ↔ if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ))
12887ralrimiva 3141 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ∀𝑥 ∈ ℙ if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
129127, 128, 113rspcdva 3608 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ)
130129exp1d 14129 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
131117, 130eqtrd 2767 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
132107, 109, 1313eqtrd 2771 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
133105, 102, 1323eqtrd 2771 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
1344, 9, 1333eqtrd 2771 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2935  cdif 3941  ifcif 4524  {csn 4624  {cpr 4626   class class class wbr 5142  cmpt 5225  wf 6538  cfv 6542  (class class class)co 7414  cc 11128  cr 11129  0cc0 11130  1c1 11131   + caddc 11133   · cmul 11135   < clt 11270  cle 11271  cmin 11466  -cneg 11467   / cdiv 11893  cn 12234  2c2 12289  7c7 12294  8c8 12295  0cn0 12494  cz 12580  cuz 12844  ...cfz 13508   mod cmo 13858  seqcseq 13990  cexp 14050  abscabs 15205  cdvds 16222  cprime 16633   pCnt cpc 16796   /L clgs 27214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-fz 13509  df-fzo 13652  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-dvds 16223  df-gcd 16461  df-prm 16634  df-phi 16726  df-pc 16797  df-lgs 27215
This theorem is referenced by:  lgsval4lem  27228  lgsval2  27233
  Copyright terms: Public domain W3C validator