MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval2lem Structured version   Visualization version   GIF version

Theorem lgsval2lem 26671
Description: Lemma for lgsval2 26677. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ β„• ↦ if(𝑛 ∈ β„™, (if(𝑛 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 βˆ’ 1) / 2)) + 1) mod 𝑛) βˆ’ 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval2lem ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval2lem
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 prmz 16558 . . 3 (𝑁 ∈ β„™ β†’ 𝑁 ∈ β„€)
2 lgsval.1 . . . 4 𝐹 = (𝑛 ∈ β„• ↦ if(𝑛 ∈ β„™, (if(𝑛 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 βˆ’ 1) / 2)) + 1) mod 𝑛) βˆ’ 1))↑(𝑛 pCnt 𝑁)), 1))
32lgsval 26665 . . 3 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) Β· (seq1( Β· , 𝐹)β€˜(absβ€˜π‘)))))
41, 3sylan2 594 . 2 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) Β· (seq1( Β· , 𝐹)β€˜(absβ€˜π‘)))))
5 prmnn 16557 . . . . . 6 (𝑁 ∈ β„™ β†’ 𝑁 ∈ β„•)
65adantl 483 . . . . 5 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 ∈ β„•)
76nnne0d 12210 . . . 4 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 β‰  0)
87neneqd 2949 . . 3 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ Β¬ 𝑁 = 0)
98iffalsed 4502 . 2 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) Β· (seq1( Β· , 𝐹)β€˜(absβ€˜π‘)))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) Β· (seq1( Β· , 𝐹)β€˜(absβ€˜π‘))))
106nnnn0d 12480 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 ∈ β„•0)
1110nn0ge0d 12483 . . . . . . 7 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 0 ≀ 𝑁)
12 0re 11164 . . . . . . . 8 0 ∈ ℝ
136nnred 12175 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 ∈ ℝ)
14 lenlt 11240 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) β†’ (0 ≀ 𝑁 ↔ Β¬ 𝑁 < 0))
1512, 13, 14sylancr 588 . . . . . . 7 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (0 ≀ 𝑁 ↔ Β¬ 𝑁 < 0))
1611, 15mpbid 231 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ Β¬ 𝑁 < 0)
1716intnanrd 491 . . . . 5 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ Β¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 4502 . . . 4 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
1913, 11absidd 15314 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (absβ€˜π‘) = 𝑁)
2019fveq2d 6851 . . . . 5 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (seq1( Β· , 𝐹)β€˜(absβ€˜π‘)) = (seq1( Β· , 𝐹)β€˜π‘))
21 1z 12540 . . . . . . 7 1 ∈ β„€
22 prmuz2 16579 . . . . . . . . 9 (𝑁 ∈ β„™ β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
2322adantl 483 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
24 df-2 12223 . . . . . . . . 9 2 = (1 + 1)
2524fveq2i 6850 . . . . . . . 8 (β„€β‰₯β€˜2) = (β„€β‰₯β€˜(1 + 1))
2623, 25eleqtrdi 2848 . . . . . . 7 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 ∈ (β„€β‰₯β€˜(1 + 1)))
27 seqm1 13932 . . . . . . 7 ((1 ∈ β„€ ∧ 𝑁 ∈ (β„€β‰₯β€˜(1 + 1))) β†’ (seq1( Β· , 𝐹)β€˜π‘) = ((seq1( Β· , 𝐹)β€˜(𝑁 βˆ’ 1)) Β· (πΉβ€˜π‘)))
2821, 26, 27sylancr 588 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (seq1( Β· , 𝐹)β€˜π‘) = ((seq1( Β· , 𝐹)β€˜(𝑁 βˆ’ 1)) Β· (πΉβ€˜π‘)))
29 1t1e1 12322 . . . . . . . . 9 (1 Β· 1) = 1
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (1 Β· 1) = 1)
31 uz2m1nn 12855 . . . . . . . . . 10 (𝑁 ∈ (β„€β‰₯β€˜2) β†’ (𝑁 βˆ’ 1) ∈ β„•)
3223, 31syl 17 . . . . . . . . 9 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝑁 βˆ’ 1) ∈ β„•)
33 nnuz 12813 . . . . . . . . 9 β„• = (β„€β‰₯β€˜1)
3432, 33eleqtrdi 2848 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝑁 βˆ’ 1) ∈ (β„€β‰₯β€˜1))
35 elfznn 13477 . . . . . . . . . . 11 (π‘₯ ∈ (1...(𝑁 βˆ’ 1)) β†’ π‘₯ ∈ β„•)
3635adantl 483 . . . . . . . . . 10 (((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) β†’ π‘₯ ∈ β„•)
372lgsfval 26666 . . . . . . . . . 10 (π‘₯ ∈ β„• β†’ (πΉβ€˜π‘₯) = if(π‘₯ ∈ β„™, (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1))↑(π‘₯ pCnt 𝑁)), 1))
3836, 37syl 17 . . . . . . . . 9 (((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) β†’ (πΉβ€˜π‘₯) = if(π‘₯ ∈ β„™, (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1))↑(π‘₯ pCnt 𝑁)), 1))
39 elfzelz 13448 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (1...(𝑁 βˆ’ 1)) β†’ 𝑁 ∈ β„€)
4039zred 12614 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 βˆ’ 1)) β†’ 𝑁 ∈ ℝ)
4140ltm1d 12094 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 βˆ’ 1)) β†’ (𝑁 βˆ’ 1) < 𝑁)
42 peano2rem 11475 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℝ β†’ (𝑁 βˆ’ 1) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 βˆ’ 1)) β†’ (𝑁 βˆ’ 1) ∈ ℝ)
44 elfzle2 13452 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 βˆ’ 1)) β†’ 𝑁 ≀ (𝑁 βˆ’ 1))
4540, 43, 44lensymd 11313 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 βˆ’ 1)) β†’ Β¬ (𝑁 βˆ’ 1) < 𝑁)
4641, 45pm2.65i 193 . . . . . . . . . . . . . . . . . 18 Β¬ 𝑁 ∈ (1...(𝑁 βˆ’ 1))
47 eleq1 2826 . . . . . . . . . . . . . . . . . 18 (π‘₯ = 𝑁 β†’ (π‘₯ ∈ (1...(𝑁 βˆ’ 1)) ↔ 𝑁 ∈ (1...(𝑁 βˆ’ 1))))
4846, 47mtbiri 327 . . . . . . . . . . . . . . . . 17 (π‘₯ = 𝑁 β†’ Β¬ π‘₯ ∈ (1...(𝑁 βˆ’ 1)))
4948con2i 139 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (1...(𝑁 βˆ’ 1)) β†’ Β¬ π‘₯ = 𝑁)
5049ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ Β¬ π‘₯ = 𝑁)
51 prmuz2 16579 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ β„™ β†’ π‘₯ ∈ (β„€β‰₯β€˜2))
52 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ 𝑁 ∈ β„™)
53 dvdsprm 16586 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ (β„€β‰₯β€˜2) ∧ 𝑁 ∈ β„™) β†’ (π‘₯ βˆ₯ 𝑁 ↔ π‘₯ = 𝑁))
5451, 52, 53syl2an2 685 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ (π‘₯ βˆ₯ 𝑁 ↔ π‘₯ = 𝑁))
5550, 54mtbird 325 . . . . . . . . . . . . . 14 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ Β¬ π‘₯ βˆ₯ 𝑁)
56 simpr 486 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ π‘₯ ∈ β„™)
576ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ 𝑁 ∈ β„•)
58 pceq0 16750 . . . . . . . . . . . . . . 15 ((π‘₯ ∈ β„™ ∧ 𝑁 ∈ β„•) β†’ ((π‘₯ pCnt 𝑁) = 0 ↔ Β¬ π‘₯ βˆ₯ 𝑁))
5956, 57, 58syl2anc 585 . . . . . . . . . . . . . 14 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ ((π‘₯ pCnt 𝑁) = 0 ↔ Β¬ π‘₯ βˆ₯ 𝑁))
6055, 59mpbird 257 . . . . . . . . . . . . 13 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ (π‘₯ pCnt 𝑁) = 0)
6160oveq2d 7378 . . . . . . . . . . . 12 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1))↑(π‘₯ pCnt 𝑁)) = (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1))↑0))
62 0z 12517 . . . . . . . . . . . . . . . . . 18 0 ∈ β„€
63 neg1z 12546 . . . . . . . . . . . . . . . . . . 19 -1 ∈ β„€
6421, 63ifcli 4538 . . . . . . . . . . . . . . . . . 18 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ β„€
6562, 64ifcli 4538 . . . . . . . . . . . . . . . . 17 if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ β„€
6665a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ π‘₯ = 2) β†’ if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ β„€)
67 simpl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝐴 ∈ β„€)
6867ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ 𝐴 ∈ β„€)
69 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ π‘₯ ∈ β„™)
70 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ Β¬ π‘₯ = 2)
7170neqned 2951 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ π‘₯ β‰  2)
72 eldifsn 4752 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘₯ ∈ (β„™ βˆ– {2}) ↔ (π‘₯ ∈ β„™ ∧ π‘₯ β‰  2))
7369, 71, 72sylanbrc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ π‘₯ ∈ (β„™ βˆ– {2}))
74 oddprm 16689 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘₯ ∈ (β„™ βˆ– {2}) β†’ ((π‘₯ βˆ’ 1) / 2) ∈ β„•)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ ((π‘₯ βˆ’ 1) / 2) ∈ β„•)
7675nnnn0d 12480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ ((π‘₯ βˆ’ 1) / 2) ∈ β„•0)
77 zexpcl 13989 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ β„€ ∧ ((π‘₯ βˆ’ 1) / 2) ∈ β„•0) β†’ (𝐴↑((π‘₯ βˆ’ 1) / 2)) ∈ β„€)
7868, 76, 77syl2anc 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ (𝐴↑((π‘₯ βˆ’ 1) / 2)) ∈ β„€)
7978peano2zd 12617 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ ((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) ∈ β„€)
80 prmnn 16557 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ β„™ β†’ π‘₯ ∈ β„•)
8180ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ π‘₯ ∈ β„•)
8279, 81zmodcld 13804 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ (((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) ∈ β„•0)
8382nn0zd 12532 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ (((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) ∈ β„€)
84 peano2zm 12553 . . . . . . . . . . . . . . . . 17 ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) ∈ β„€ β†’ ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1) ∈ β„€)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) ∧ Β¬ π‘₯ = 2) β†’ ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1) ∈ β„€)
8666, 85ifclda 4526 . . . . . . . . . . . . . . 15 (((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) β†’ if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1)) ∈ β„€)
8786zcnd 12615 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ β„™) β†’ if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1)) ∈ β„‚)
8887adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1)) ∈ β„‚)
8988exp0d 14052 . . . . . . . . . . . 12 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1))↑0) = 1)
9061, 89eqtrd 2777 . . . . . . . . . . 11 ((((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) ∧ π‘₯ ∈ β„™) β†’ (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1))↑(π‘₯ pCnt 𝑁)) = 1)
9190ifeq1da 4522 . . . . . . . . . 10 (((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) β†’ if(π‘₯ ∈ β„™, (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1))↑(π‘₯ pCnt 𝑁)), 1) = if(π‘₯ ∈ β„™, 1, 1))
92 ifid 4531 . . . . . . . . . 10 if(π‘₯ ∈ β„™, 1, 1) = 1
9391, 92eqtrdi 2793 . . . . . . . . 9 (((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) β†’ if(π‘₯ ∈ β„™, (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1))↑(π‘₯ pCnt 𝑁)), 1) = 1)
9438, 93eqtrd 2777 . . . . . . . 8 (((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) ∧ π‘₯ ∈ (1...(𝑁 βˆ’ 1))) β†’ (πΉβ€˜π‘₯) = 1)
9530, 34, 94seqid3 13959 . . . . . . 7 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (seq1( Β· , 𝐹)β€˜(𝑁 βˆ’ 1)) = 1)
9695oveq1d 7377 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ ((seq1( Β· , 𝐹)β€˜(𝑁 βˆ’ 1)) Β· (πΉβ€˜π‘)) = (1 Β· (πΉβ€˜π‘)))
971adantl 483 . . . . . . . . . 10 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 ∈ β„€)
982lgsfcl 26669 . . . . . . . . . 10 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„€ ∧ 𝑁 β‰  0) β†’ 𝐹:β„•βŸΆβ„€)
9967, 97, 7, 98syl3anc 1372 . . . . . . . . 9 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝐹:β„•βŸΆβ„€)
10099, 6ffvelcdmd 7041 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (πΉβ€˜π‘) ∈ β„€)
101100zcnd 12615 . . . . . . 7 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (πΉβ€˜π‘) ∈ β„‚)
102101mulid2d 11180 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (1 Β· (πΉβ€˜π‘)) = (πΉβ€˜π‘))
10328, 96, 1023eqtrd 2781 . . . . 5 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (seq1( Β· , 𝐹)β€˜π‘) = (πΉβ€˜π‘))
10420, 103eqtrd 2777 . . . 4 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (seq1( Β· , 𝐹)β€˜(absβ€˜π‘)) = (πΉβ€˜π‘))
10518, 104oveq12d 7380 . . 3 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) Β· (seq1( Β· , 𝐹)β€˜(absβ€˜π‘))) = (1 Β· (πΉβ€˜π‘)))
1062lgsfval 26666 . . . . 5 (𝑁 ∈ β„• β†’ (πΉβ€˜π‘) = if(𝑁 ∈ β„™, (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑(𝑁 pCnt 𝑁)), 1))
1076, 106syl 17 . . . 4 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (πΉβ€˜π‘) = if(𝑁 ∈ β„™, (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑(𝑁 pCnt 𝑁)), 1))
108 iftrue 4497 . . . . 5 (𝑁 ∈ β„™ β†’ if(𝑁 ∈ β„™, (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑(𝑁 pCnt 𝑁)))
109108adantl 483 . . . 4 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ if(𝑁 ∈ β„™, (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑(𝑁 pCnt 𝑁)))
1106nncnd 12176 . . . . . . . . 9 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 ∈ β„‚)
111110exp1d 14053 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝑁↑1) = 𝑁)
112111oveq2d 7378 . . . . . . 7 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝑁 pCnt (𝑁↑1)) = (𝑁 pCnt 𝑁))
113 simpr 486 . . . . . . . 8 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ 𝑁 ∈ β„™)
114 pcid 16752 . . . . . . . 8 ((𝑁 ∈ β„™ ∧ 1 ∈ β„€) β†’ (𝑁 pCnt (𝑁↑1)) = 1)
115113, 21, 114sylancl 587 . . . . . . 7 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝑁 pCnt (𝑁↑1)) = 1)
116112, 115eqtr3d 2779 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝑁 pCnt 𝑁) = 1)
117116oveq2d 7378 . . . . 5 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑(𝑁 pCnt 𝑁)) = (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑1))
118 eqeq1 2741 . . . . . . . . 9 (π‘₯ = 𝑁 β†’ (π‘₯ = 2 ↔ 𝑁 = 2))
119 oveq1 7369 . . . . . . . . . . . . . 14 (π‘₯ = 𝑁 β†’ (π‘₯ βˆ’ 1) = (𝑁 βˆ’ 1))
120119oveq1d 7377 . . . . . . . . . . . . 13 (π‘₯ = 𝑁 β†’ ((π‘₯ βˆ’ 1) / 2) = ((𝑁 βˆ’ 1) / 2))
121120oveq2d 7378 . . . . . . . . . . . 12 (π‘₯ = 𝑁 β†’ (𝐴↑((π‘₯ βˆ’ 1) / 2)) = (𝐴↑((𝑁 βˆ’ 1) / 2)))
122121oveq1d 7377 . . . . . . . . . . 11 (π‘₯ = 𝑁 β†’ ((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) = ((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1))
123 id 22 . . . . . . . . . . 11 (π‘₯ = 𝑁 β†’ π‘₯ = 𝑁)
124122, 123oveq12d 7380 . . . . . . . . . 10 (π‘₯ = 𝑁 β†’ (((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) = (((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁))
125124oveq1d 7377 . . . . . . . . 9 (π‘₯ = 𝑁 β†’ ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1) = ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))
126118, 125ifbieq2d 4517 . . . . . . . 8 (π‘₯ = 𝑁 β†’ if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1)) = if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)))
127126eleq1d 2823 . . . . . . 7 (π‘₯ = 𝑁 β†’ (if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1)) ∈ β„‚ ↔ if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)) ∈ β„‚))
12887ralrimiva 3144 . . . . . . 7 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ βˆ€π‘₯ ∈ β„™ if(π‘₯ = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((π‘₯ βˆ’ 1) / 2)) + 1) mod π‘₯) βˆ’ 1)) ∈ β„‚)
129127, 128, 113rspcdva 3585 . . . . . 6 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)) ∈ β„‚)
130129exp1d 14053 . . . . 5 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑1) = if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)))
131117, 130eqtrd 2777 . . . 4 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1))↑(𝑁 pCnt 𝑁)) = if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)))
132107, 109, 1313eqtrd 2781 . . 3 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (πΉβ€˜π‘) = if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)))
133105, 102, 1323eqtrd 2781 . 2 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) Β· (seq1( Β· , 𝐹)β€˜(absβ€˜π‘))) = if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)))
1344, 9, 1333eqtrd 2781 1 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„™) β†’ (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 βˆ’ 1) / 2)) + 1) mod 𝑁) βˆ’ 1)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   βˆ– cdif 3912  ifcif 4491  {csn 4591  {cpr 4593   class class class wbr 5110   ↦ cmpt 5193  βŸΆwf 6497  β€˜cfv 6501  (class class class)co 7362  β„‚cc 11056  β„cr 11057  0cc0 11058  1c1 11059   + caddc 11061   Β· cmul 11063   < clt 11196   ≀ cle 11197   βˆ’ cmin 11392  -cneg 11393   / cdiv 11819  β„•cn 12160  2c2 12215  7c7 12220  8c8 12221  β„•0cn0 12420  β„€cz 12506  β„€β‰₯cuz 12770  ...cfz 13431   mod cmo 13781  seqcseq 13913  β†‘cexp 13974  abscabs 15126   βˆ₯ cdvds 16143  β„™cprime 16554   pCnt cpc 16715   /L clgs 26658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-dvds 16144  df-gcd 16382  df-prm 16555  df-phi 16645  df-pc 16716  df-lgs 26659
This theorem is referenced by:  lgsval4lem  26672  lgsval2  26677
  Copyright terms: Public domain W3C validator