MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval2lem Structured version   Visualization version   GIF version

Theorem lgsval2lem 27369
Description: Lemma for lgsval2 27375. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval2lem ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval2lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmz 16722 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
2 lgsval.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
32lgsval 27363 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
41, 3sylan2 592 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
5 prmnn 16721 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
65adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
76nnne0d 12343 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ≠ 0)
87neneqd 2951 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 = 0)
98iffalsed 4559 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
106nnnn0d 12613 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
1110nn0ge0d 12616 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 0 ≤ 𝑁)
12 0re 11292 . . . . . . . 8 0 ∈ ℝ
136nnred 12308 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℝ)
14 lenlt 11368 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1512, 13, 14sylancr 586 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1611, 15mpbid 232 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 < 0)
1716intnanrd 489 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 4559 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
1913, 11absidd 15471 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (abs‘𝑁) = 𝑁)
2019fveq2d 6924 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
21 1z 12673 . . . . . . 7 1 ∈ ℤ
22 prmuz2 16743 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
2322adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘2))
24 df-2 12356 . . . . . . . . 9 2 = (1 + 1)
2524fveq2i 6923 . . . . . . . 8 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2854 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘(1 + 1)))
27 seqm1 14070 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 + 1))) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)))
2821, 26, 27sylancr 586 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)))
29 1t1e1 12455 . . . . . . . . 9 (1 · 1) = 1
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · 1) = 1)
31 uz2m1nn 12988 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
3223, 31syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ ℕ)
33 nnuz 12946 . . . . . . . . 9 ℕ = (ℤ‘1)
3432, 33eleqtrdi 2854 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ (ℤ‘1))
35 elfznn 13613 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 ∈ ℕ)
3635adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ ℕ)
372lgsfval 27364 . . . . . . . . . 10 (𝑥 ∈ ℕ → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
3836, 37syl 17 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
39 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℤ)
4039zred 12747 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℝ)
4140ltm1d 12227 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) < 𝑁)
42 peano2rem 11603 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈ ℝ)
44 elfzle2 13588 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
4540, 43, 44lensymd 11441 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → ¬ (𝑁 − 1) < 𝑁)
4641, 45pm2.65i 194 . . . . . . . . . . . . . . . . . 18 ¬ 𝑁 ∈ (1...(𝑁 − 1))
47 eleq1 2832 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (𝑥 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
4846, 47mtbiri 327 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ¬ 𝑥 ∈ (1...(𝑁 − 1)))
4948con2i 139 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑁 − 1)) → ¬ 𝑥 = 𝑁)
5049ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥 = 𝑁)
51 prmuz2 16743 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
52 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℙ)
53 dvdsprm 16750 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
5451, 52, 53syl2an2 685 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
5550, 54mtbird 325 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥𝑁)
56 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑥 ∈ ℙ)
576ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℕ)
58 pceq0 16918 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
5956, 57, 58syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
6055, 59mpbird 257 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥 pCnt 𝑁) = 0)
6160oveq2d 7464 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0))
62 0z 12650 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
63 neg1z 12679 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℤ
6421, 63ifcli 4595 . . . . . . . . . . . . . . . . . 18 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℤ
6562, 64ifcli 4595 . . . . . . . . . . . . . . . . 17 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ
6665a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ 𝑥 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
67 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐴 ∈ ℤ)
6867ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝐴 ∈ ℤ)
69 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℙ)
70 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ¬ 𝑥 = 2)
7170neqned 2953 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ≠ 2)
72 eldifsn 4811 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2))
7369, 71, 72sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ (ℙ ∖ {2}))
74 oddprm 16857 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥 − 1) / 2) ∈ ℕ)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ)
7675nnnn0d 12613 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ0)
77 zexpcl 14127 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ ((𝑥 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
7868, 76, 77syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
7978peano2zd 12750 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝐴↑((𝑥 − 1) / 2)) + 1) ∈ ℤ)
80 prmnn 16721 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
8180ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℕ)
8279, 81zmodcld 13943 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℕ0)
8382nn0zd 12665 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ)
84 peano2zm 12686 . . . . . . . . . . . . . . . . 17 ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
8666, 85ifclda 4583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℤ)
8786zcnd 12748 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
8887adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
8988exp0d 14190 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0) = 1)
9061, 89eqtrd 2780 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = 1)
9190ifeq1da 4579 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = if(𝑥 ∈ ℙ, 1, 1))
92 ifid 4588 . . . . . . . . . 10 if(𝑥 ∈ ℙ, 1, 1) = 1
9391, 92eqtrdi 2796 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = 1)
9438, 93eqtrd 2780 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = 1)
9530, 34, 94seqid3 14097 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(𝑁 − 1)) = 1)
9695oveq1d 7463 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)) = (1 · (𝐹𝑁)))
971adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℤ)
982lgsfcl 27367 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
9967, 97, 7, 98syl3anc 1371 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐹:ℕ⟶ℤ)
10099, 6ffvelcdmd 7119 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
101100zcnd 12748 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℂ)
102101mullidd 11308 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · (𝐹𝑁)) = (𝐹𝑁))
10328, 96, 1023eqtrd 2784 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = (𝐹𝑁))
10420, 103eqtrd 2780 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (𝐹𝑁))
10518, 104oveq12d 7466 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (𝐹𝑁)))
1062lgsfval 27364 . . . . 5 (𝑁 ∈ ℕ → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
1076, 106syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
108 iftrue 4554 . . . . 5 (𝑁 ∈ ℙ → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
109108adantl 481 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
1106nncnd 12309 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ)
111110exp1d 14191 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁↑1) = 𝑁)
112111oveq2d 7464 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = (𝑁 pCnt 𝑁))
113 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℙ)
114 pcid 16920 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑁 pCnt (𝑁↑1)) = 1)
115113, 21, 114sylancl 585 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = 1)
116112, 115eqtr3d 2782 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt 𝑁) = 1)
117116oveq2d 7464 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1))
118 eqeq1 2744 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 = 2 ↔ 𝑁 = 2))
119 oveq1 7455 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
120119oveq1d 7463 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑥 − 1) / 2) = ((𝑁 − 1) / 2))
121120oveq2d 7464 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐴↑((𝑥 − 1) / 2)) = (𝐴↑((𝑁 − 1) / 2)))
122121oveq1d 7463 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐴↑((𝑥 − 1) / 2)) + 1) = ((𝐴↑((𝑁 − 1) / 2)) + 1))
123 id 22 . . . . . . . . . . 11 (𝑥 = 𝑁𝑥 = 𝑁)
124122, 123oveq12d 7466 . . . . . . . . . 10 (𝑥 = 𝑁 → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) = (((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁))
125124oveq1d 7463 . . . . . . . . 9 (𝑥 = 𝑁 → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) = ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))
126118, 125ifbieq2d 4574 . . . . . . . 8 (𝑥 = 𝑁 → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
127126eleq1d 2829 . . . . . . 7 (𝑥 = 𝑁 → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ ↔ if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ))
12887ralrimiva 3152 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ∀𝑥 ∈ ℙ if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
129127, 128, 113rspcdva 3636 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ)
130129exp1d 14191 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
131117, 130eqtrd 2780 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
132107, 109, 1313eqtrd 2784 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
133105, 102, 1323eqtrd 2784 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
1344, 9, 1333eqtrd 2784 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  ifcif 4548  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  7c7 12353  8c8 12354  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567   mod cmo 13920  seqcseq 14052  cexp 14112  abscabs 15283  cdvds 16302  cprime 16718   pCnt cpc 16883   /L clgs 27356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-pc 16884  df-lgs 27357
This theorem is referenced by:  lgsval4lem  27370  lgsval2  27375
  Copyright terms: Public domain W3C validator