MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval2lem Structured version   Visualization version   GIF version

Theorem lgsval2lem 26455
Description: Lemma for lgsval2 26461. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval2lem ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval2lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmz 16380 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
2 lgsval.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
32lgsval 26449 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
41, 3sylan2 593 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
5 prmnn 16379 . . . . . 6 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
65adantl 482 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
76nnne0d 12023 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ≠ 0)
87neneqd 2948 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 = 0)
98iffalsed 4470 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
106nnnn0d 12293 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
1110nn0ge0d 12296 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 0 ≤ 𝑁)
12 0re 10977 . . . . . . . 8 0 ∈ ℝ
136nnred 11988 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℝ)
14 lenlt 11053 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1512, 13, 14sylancr 587 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
1611, 15mpbid 231 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ 𝑁 < 0)
1716intnanrd 490 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
1817iffalsed 4470 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
1913, 11absidd 15134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (abs‘𝑁) = 𝑁)
2019fveq2d 6778 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁))
21 1z 12350 . . . . . . 7 1 ∈ ℤ
22 prmuz2 16401 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
2322adantl 482 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘2))
24 df-2 12036 . . . . . . . . 9 2 = (1 + 1)
2524fveq2i 6777 . . . . . . . 8 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2849 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ (ℤ‘(1 + 1)))
27 seqm1 13740 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 + 1))) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)))
2821, 26, 27sylancr 587 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)))
29 1t1e1 12135 . . . . . . . . 9 (1 · 1) = 1
3029a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · 1) = 1)
31 uz2m1nn 12663 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
3223, 31syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ ℕ)
33 nnuz 12621 . . . . . . . . 9 ℕ = (ℤ‘1)
3432, 33eleqtrdi 2849 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 − 1) ∈ (ℤ‘1))
35 elfznn 13285 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 ∈ ℕ)
3635adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ ℕ)
372lgsfval 26450 . . . . . . . . . 10 (𝑥 ∈ ℕ → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
3836, 37syl 17 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1))
39 elfzelz 13256 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℤ)
4039zred 12426 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ∈ ℝ)
4140ltm1d 11907 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) < 𝑁)
42 peano2rem 11288 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
4340, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈ ℝ)
44 elfzle2 13260 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
4540, 43, 44lensymd 11126 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (1...(𝑁 − 1)) → ¬ (𝑁 − 1) < 𝑁)
4641, 45pm2.65i 193 . . . . . . . . . . . . . . . . . 18 ¬ 𝑁 ∈ (1...(𝑁 − 1))
47 eleq1 2826 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑁 → (𝑥 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
4846, 47mtbiri 327 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → ¬ 𝑥 ∈ (1...(𝑁 − 1)))
4948con2i 139 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(𝑁 − 1)) → ¬ 𝑥 = 𝑁)
5049ad2antlr 724 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥 = 𝑁)
51 prmuz2 16401 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
52 simpllr 773 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℙ)
53 dvdsprm 16408 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
5451, 52, 53syl2an2 683 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥𝑁𝑥 = 𝑁))
5550, 54mtbird 325 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ¬ 𝑥𝑁)
56 simpr 485 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑥 ∈ ℙ)
576ad2antrr 723 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → 𝑁 ∈ ℕ)
58 pceq0 16572 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
5956, 57, 58syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → ((𝑥 pCnt 𝑁) = 0 ↔ ¬ 𝑥𝑁))
6055, 59mpbird 256 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (𝑥 pCnt 𝑁) = 0)
6160oveq2d 7291 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0))
62 0z 12330 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
63 neg1z 12356 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℤ
6421, 63ifcli 4506 . . . . . . . . . . . . . . . . . 18 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℤ
6562, 64ifcli 4506 . . . . . . . . . . . . . . . . 17 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ
6665a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ 𝑥 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℤ)
67 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐴 ∈ ℤ)
6867ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝐴 ∈ ℤ)
69 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℙ)
70 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ¬ 𝑥 = 2)
7170neqned 2950 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ≠ 2)
72 eldifsn 4720 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (ℙ ∖ {2}) ↔ (𝑥 ∈ ℙ ∧ 𝑥 ≠ 2))
7369, 71, 72sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ (ℙ ∖ {2}))
74 oddprm 16511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (ℙ ∖ {2}) → ((𝑥 − 1) / 2) ∈ ℕ)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ)
7675nnnn0d 12293 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝑥 − 1) / 2) ∈ ℕ0)
77 zexpcl 13797 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ ((𝑥 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
7868, 76, 77syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (𝐴↑((𝑥 − 1) / 2)) ∈ ℤ)
7978peano2zd 12429 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((𝐴↑((𝑥 − 1) / 2)) + 1) ∈ ℤ)
80 prmnn 16379 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
8180ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → 𝑥 ∈ ℕ)
8279, 81zmodcld 13612 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℕ0)
8382nn0zd 12424 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ)
84 peano2zm 12363 . . . . . . . . . . . . . . . . 17 ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) ∈ ℤ → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
8583, 84syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) ∧ ¬ 𝑥 = 2) → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) ∈ ℤ)
8666, 85ifclda 4494 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℤ)
8786zcnd 12427 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
8887adantlr 712 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
8988exp0d 13858 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑0) = 1)
9061, 89eqtrd 2778 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 ∈ ℙ) → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)) = 1)
9190ifeq1da 4490 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = if(𝑥 ∈ ℙ, 1, 1))
92 ifid 4499 . . . . . . . . . 10 if(𝑥 ∈ ℙ, 1, 1) = 1
9391, 92eqtrdi 2794 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → if(𝑥 ∈ ℙ, (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1))↑(𝑥 pCnt 𝑁)), 1) = 1)
9438, 93eqtrd 2778 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → (𝐹𝑥) = 1)
9530, 34, 94seqid3 13767 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(𝑁 − 1)) = 1)
9695oveq1d 7290 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ((seq1( · , 𝐹)‘(𝑁 − 1)) · (𝐹𝑁)) = (1 · (𝐹𝑁)))
971adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℤ)
982lgsfcl 26453 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ)
9967, 97, 7, 98syl3anc 1370 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝐹:ℕ⟶ℤ)
10099, 6ffvelrnd 6962 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
101100zcnd 12427 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) ∈ ℂ)
102101mulid2d 10993 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (1 · (𝐹𝑁)) = (𝐹𝑁))
10328, 96, 1023eqtrd 2782 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘𝑁) = (𝐹𝑁))
10420, 103eqtrd 2778 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (𝐹𝑁))
10518, 104oveq12d 7293 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (𝐹𝑁)))
1062lgsfval 26450 . . . . 5 (𝑁 ∈ ℕ → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
1076, 106syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1))
108 iftrue 4465 . . . . 5 (𝑁 ∈ ℙ → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
109108adantl 482 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 ∈ ℙ, (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)), 1) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)))
1106nncnd 11989 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℂ)
111110exp1d 13859 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁↑1) = 𝑁)
112111oveq2d 7291 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = (𝑁 pCnt 𝑁))
113 simpr 485 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℙ)
114 pcid 16574 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑁 pCnt (𝑁↑1)) = 1)
115113, 21, 114sylancl 586 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt (𝑁↑1)) = 1)
116112, 115eqtr3d 2780 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝑁 pCnt 𝑁) = 1)
117116oveq2d 7291 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1))
118 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 = 2 ↔ 𝑁 = 2))
119 oveq1 7282 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
120119oveq1d 7290 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑥 − 1) / 2) = ((𝑁 − 1) / 2))
121120oveq2d 7291 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐴↑((𝑥 − 1) / 2)) = (𝐴↑((𝑁 − 1) / 2)))
122121oveq1d 7290 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐴↑((𝑥 − 1) / 2)) + 1) = ((𝐴↑((𝑁 − 1) / 2)) + 1))
123 id 22 . . . . . . . . . . 11 (𝑥 = 𝑁𝑥 = 𝑁)
124122, 123oveq12d 7293 . . . . . . . . . 10 (𝑥 = 𝑁 → (((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) = (((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁))
125124oveq1d 7290 . . . . . . . . 9 (𝑥 = 𝑁 → ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1) = ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))
126118, 125ifbieq2d 4485 . . . . . . . 8 (𝑥 = 𝑁 → if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
127126eleq1d 2823 . . . . . . 7 (𝑥 = 𝑁 → (if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ ↔ if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ))
12887ralrimiva 3103 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → ∀𝑥 ∈ ℙ if(𝑥 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑥 − 1) / 2)) + 1) mod 𝑥) − 1)) ∈ ℂ)
129127, 128, 113rspcdva 3562 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)) ∈ ℂ)
130129exp1d 13859 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑1) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
131117, 130eqtrd 2778 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))↑(𝑁 pCnt 𝑁)) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
132107, 109, 1313eqtrd 2782 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐹𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
133105, 102, 1323eqtrd 2782 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
1344, 9, 1333eqtrd 2782 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  ifcif 4459  {csn 4561  {cpr 4563   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  7c7 12033  8c8 12034  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239   mod cmo 13589  seqcseq 13721  cexp 13782  abscabs 14945  cdvds 15963  cprime 16376   pCnt cpc 16537   /L clgs 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-pc 16538  df-lgs 26443
This theorem is referenced by:  lgsval4lem  26456  lgsval2  26461
  Copyright terms: Public domain W3C validator