MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmsca Structured version   Visualization version   GIF version

Theorem lmhmsca 19914
Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlem.k 𝐾 = (Scalar‘𝑆)
lmhmlem.l 𝐿 = (Scalar‘𝑇)
Assertion
Ref Expression
lmhmsca (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾)

Proof of Theorem lmhmsca
StepHypRef Expression
1 lmhmlem.k . . 3 𝐾 = (Scalar‘𝑆)
2 lmhmlem.l . . 3 𝐿 = (Scalar‘𝑇)
31, 2lmhmlem 19913 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)))
43simprrd 774 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  cfv 6333  (class class class)co 7164  Scalarcsca 16664   GrpHom cghm 18466  LModclmod 19746   LMHom clmhm 19903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6291  df-fun 6335  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-lmhm 19906
This theorem is referenced by:  islmhm2  19922  lmhmco  19927  lmhmplusg  19928  lmhmvsca  19929  lmhmf1o  19930  lmhmima  19931  lmhmpreima  19932  reslmhm  19936  reslmhm2  19937  reslmhm2b  19938  lindfmm  20636  lmhmclm  23832  nmoleub2lem3  23860  nmoleub3  23864  lmhmlvec2  31266  lmhmlvec  39826
  Copyright terms: Public domain W3C validator