MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmsca Structured version   Visualization version   GIF version

Theorem lmhmsca 20506
Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlem.k 𝐾 = (Scalarβ€˜π‘†)
lmhmlem.l 𝐿 = (Scalarβ€˜π‘‡)
Assertion
Ref Expression
lmhmsca (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝐿 = 𝐾)

Proof of Theorem lmhmsca
StepHypRef Expression
1 lmhmlem.k . . 3 𝐾 = (Scalarβ€˜π‘†)
2 lmhmlem.l . . 3 𝐿 = (Scalarβ€˜π‘‡)
31, 2lmhmlem 20505 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)))
43simprrd 773 1 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝐿 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  β€˜cfv 6497  (class class class)co 7358  Scalarcsca 17141   GrpHom cghm 19010  LModclmod 20336   LMHom clmhm 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-lmhm 20498
This theorem is referenced by:  islmhm2  20514  lmhmco  20519  lmhmplusg  20520  lmhmvsca  20521  lmhmf1o  20522  lmhmima  20523  lmhmpreima  20524  reslmhm  20528  reslmhm2  20529  reslmhm2b  20530  lindfmm  21249  lmhmclm  24466  nmoleub2lem3  24494  nmoleub3  24498  lmhmlvec2  32371  lmhmlvec  40769
  Copyright terms: Public domain W3C validator