![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmhmsca | Structured version Visualization version GIF version |
Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlem.k | ⊢ 𝐾 = (Scalar‘𝑆) |
lmhmlem.l | ⊢ 𝐿 = (Scalar‘𝑇) |
Ref | Expression |
---|---|
lmhmsca | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlem.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | lmhmlem.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | 1, 2 | lmhmlem 19354 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
4 | 3 | simprrd 791 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ‘cfv 6105 (class class class)co 6882 Scalarcsca 16274 GrpHom cghm 17974 LModclmod 19185 LMHom clmhm 19344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ral 3098 df-rex 3099 df-rab 3102 df-v 3391 df-sbc 3638 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-br 4848 df-opab 4910 df-id 5224 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-iota 6068 df-fun 6107 df-fv 6113 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-lmhm 19347 |
This theorem is referenced by: islmhm2 19363 lmhmco 19368 lmhmplusg 19369 lmhmvsca 19370 lmhmf1o 19371 lmhmima 19372 lmhmpreima 19373 reslmhm 19377 reslmhm2 19378 reslmhm2b 19379 lindfmm 20495 lmhmclm 23218 nmoleub2lem3 23246 nmoleub3 23250 |
Copyright terms: Public domain | W3C validator |