![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodsn0 | Structured version Visualization version GIF version |
Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodsn0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodsn0.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
lmodsn0 | ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsn0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodfgrp 20845 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
3 | lmodsn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
4 | 3 | grpbn0 18961 | . 2 ⊢ (𝐹 ∈ Grp → 𝐵 ≠ ∅) |
5 | 2, 4 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∅c0 4325 ‘cfv 6554 Basecbs 17213 Scalarcsca 17269 Grpcgrp 18928 LModclmod 20836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-riota 7380 df-ov 7427 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-ring 20218 df-lmod 20838 |
This theorem is referenced by: lindsrng01 47851 |
Copyright terms: Public domain | W3C validator |