| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsn0 | Structured version Visualization version GIF version | ||
| Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodsn0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsn0.b | ⊢ 𝐵 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| lmodsn0 | ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsn0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodfgrp 20800 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 3 | lmodsn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 3 | grpbn0 18876 | . 2 ⊢ (𝐹 ∈ Grp → 𝐵 ≠ ∅) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 ‘cfv 6481 Basecbs 17117 Scalarcsca 17161 Grpcgrp 18843 LModclmod 20791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-ring 20151 df-lmod 20793 |
| This theorem is referenced by: lindsrng01 48499 |
| Copyright terms: Public domain | W3C validator |