MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsn0 Structured version   Visualization version   GIF version

Theorem lmodsn0 19086
Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodsn0.f 𝐹 = (Scalar‘𝑊)
lmodsn0.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
lmodsn0 (𝑊 ∈ LMod → 𝐵 ≠ ∅)

Proof of Theorem lmodsn0
StepHypRef Expression
1 lmodsn0.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodfgrp 19082 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
3 lmodsn0.b . . 3 𝐵 = (Base‘𝐹)
43grpbn0 17659 . 2 (𝐹 ∈ Grp → 𝐵 ≠ ∅)
52, 4syl 17 1 (𝑊 ∈ LMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wne 2943  c0 4063  cfv 6030  Basecbs 16064  Scalarcsca 16152  Grpcgrp 17630  LModclmod 19073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-iota 5993  df-fun 6032  df-fv 6038  df-riota 6757  df-ov 6799  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-ring 18757  df-lmod 19075
This theorem is referenced by:  lindsrng01  42780
  Copyright terms: Public domain W3C validator