MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsn0 Structured version   Visualization version   GIF version

Theorem lmodsn0 20850
Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodsn0.f 𝐹 = (Scalar‘𝑊)
lmodsn0.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
lmodsn0 (𝑊 ∈ LMod → 𝐵 ≠ ∅)

Proof of Theorem lmodsn0
StepHypRef Expression
1 lmodsn0.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodfgrp 20845 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
3 lmodsn0.b . . 3 𝐵 = (Base‘𝐹)
43grpbn0 18961 . 2 (𝐹 ∈ Grp → 𝐵 ≠ ∅)
52, 4syl 17 1 (𝑊 ∈ LMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2930  c0 4325  cfv 6554  Basecbs 17213  Scalarcsca 17269  Grpcgrp 18928  LModclmod 20836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6506  df-fun 6556  df-fv 6562  df-riota 7380  df-ov 7427  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-ring 20218  df-lmod 20838
This theorem is referenced by:  lindsrng01  47851
  Copyright terms: Public domain W3C validator