| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsn0 | Structured version Visualization version GIF version | ||
| Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodsn0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsn0.b | ⊢ 𝐵 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| lmodsn0 | ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsn0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodfgrp 20782 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 3 | lmodsn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 3 | grpbn0 18905 | . 2 ⊢ (𝐹 ∈ Grp → 𝐵 ≠ ∅) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 ‘cfv 6514 Basecbs 17186 Scalarcsca 17230 Grpcgrp 18872 LModclmod 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-ring 20151 df-lmod 20775 |
| This theorem is referenced by: lindsrng01 48461 |
| Copyright terms: Public domain | W3C validator |