MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsn0 Structured version   Visualization version   GIF version

Theorem lmodsn0 20787
Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodsn0.f 𝐹 = (Scalar‘𝑊)
lmodsn0.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
lmodsn0 (𝑊 ∈ LMod → 𝐵 ≠ ∅)

Proof of Theorem lmodsn0
StepHypRef Expression
1 lmodsn0.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodfgrp 20782 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
3 lmodsn0.b . . 3 𝐵 = (Base‘𝐹)
43grpbn0 18905 . 2 (𝐹 ∈ Grp → 𝐵 ≠ ∅)
52, 4syl 17 1 (𝑊 ∈ LMod → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  c0 4299  cfv 6514  Basecbs 17186  Scalarcsca 17230  Grpcgrp 18872  LModclmod 20773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-ring 20151  df-lmod 20775
This theorem is referenced by:  lindsrng01  48461
  Copyright terms: Public domain W3C validator