![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodsn0 | Structured version Visualization version GIF version |
Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodsn0.f | β’ πΉ = (Scalarβπ) |
lmodsn0.b | β’ π΅ = (BaseβπΉ) |
Ref | Expression |
---|---|
lmodsn0 | β’ (π β LMod β π΅ β β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsn0.f | . . 3 β’ πΉ = (Scalarβπ) | |
2 | 1 | lmodfgrp 20711 | . 2 β’ (π β LMod β πΉ β Grp) |
3 | lmodsn0.b | . . 3 β’ π΅ = (BaseβπΉ) | |
4 | 3 | grpbn0 18894 | . 2 β’ (πΉ β Grp β π΅ β β ) |
5 | 2, 4 | syl 17 | 1 β’ (π β LMod β π΅ β β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wne 2939 β c0 4322 βcfv 6543 Basecbs 17151 Scalarcsca 17207 Grpcgrp 18861 LModclmod 20702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7368 df-ov 7415 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-ring 20136 df-lmod 20704 |
This theorem is referenced by: lindsrng01 47311 |
Copyright terms: Public domain | W3C validator |