| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsn0 | Structured version Visualization version GIF version | ||
| Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodsn0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsn0.b | ⊢ 𝐵 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| lmodsn0 | ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsn0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodfgrp 20804 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 3 | lmodsn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 3 | grpbn0 18881 | . 2 ⊢ (𝐹 ∈ Grp → 𝐵 ≠ ∅) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 ‘cfv 6486 Basecbs 17122 Scalarcsca 17166 Grpcgrp 18848 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-ring 20155 df-lmod 20797 |
| This theorem is referenced by: lindsrng01 48594 |
| Copyright terms: Public domain | W3C validator |