| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version | ||
| Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18897 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 4 | 3 | ne0d 4305 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 ‘cfv 6511 Basecbs 17179 0gc0g 17402 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: grpn0 18903 dfgrp3 18971 issubg2 19073 grpissubg 19078 ghmrn 19161 gexcl3 19517 gexcl2 19519 sylow1lem1 19528 sylow1lem3 19530 sylow1lem5 19532 pgpfi 19535 pgpfi2 19536 sylow2blem3 19552 slwhash 19554 fislw 19555 gexex 19783 lt6abl 19825 ablfac1lem 20000 ablfac1b 20002 ablfac1c 20003 ablfac1eu 20005 pgpfac1lem2 20007 pgpfac1lem3a 20008 ablfaclem3 20019 dvdsr02 20281 0ringnnzr 20434 lmodbn0 20777 lmodsn0 20780 rmodislmodlem 20835 rmodislmod 20836 islss3 20865 rnglidl1 21142 isclmp 24997 qustriv 33335 dfacbasgrp 43097 |
| Copyright terms: Public domain | W3C validator |