![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version |
Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2735 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 18996 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
4 | 3 | ne0d 4348 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 ‘cfv 6563 Basecbs 17245 0gc0g 17486 Grpcgrp 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 |
This theorem is referenced by: grpn0 19002 dfgrp3 19070 issubg2 19172 grpissubg 19177 ghmrn 19260 gexcl3 19620 gexcl2 19622 sylow1lem1 19631 sylow1lem3 19633 sylow1lem5 19635 pgpfi 19638 pgpfi2 19639 sylow2blem3 19655 slwhash 19657 fislw 19658 gexex 19886 lt6abl 19928 ablfac1lem 20103 ablfac1b 20105 ablfac1c 20106 ablfac1eu 20108 pgpfac1lem2 20110 pgpfac1lem3a 20111 ablfaclem3 20122 dvdsr02 20389 0ringnnzr 20542 lmodbn0 20886 lmodsn0 20889 rmodislmodlem 20944 rmodislmod 20945 rmodislmodOLD 20946 islss3 20975 rnglidl1 21260 isclmp 25144 qustriv 33372 dfacbasgrp 43097 |
Copyright terms: Public domain | W3C validator |