Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version |
Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 18603 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
4 | 3 | ne0d 4275 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∅c0 4262 ‘cfv 6431 Basecbs 16908 0gc0g 17146 Grpcgrp 18573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6389 df-fun 6433 df-fv 6439 df-riota 7226 df-ov 7272 df-0g 17148 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-grp 18576 |
This theorem is referenced by: grpn0 18607 dfgrp3 18670 issubg2 18766 grpissubg 18771 ghmrn 18843 gexcl3 19188 gexcl2 19190 sylow1lem1 19199 sylow1lem3 19201 sylow1lem5 19203 pgpfi 19206 pgpfi2 19207 sylow2blem3 19223 slwhash 19225 fislw 19226 gexex 19450 lt6abl 19492 ablfac1lem 19667 ablfac1b 19669 ablfac1c 19670 ablfac1eu 19672 pgpfac1lem2 19674 pgpfac1lem3a 19675 ablfaclem3 19686 dvdsr02 19894 lmodbn0 20129 lmodsn0 20132 rmodislmodlem 20186 rmodislmod 20187 rmodislmodOLD 20188 islss3 20217 0ringnnzr 20536 isclmp 24256 qustriv 31554 dfacbasgrp 40928 |
Copyright terms: Public domain | W3C validator |