| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version | ||
| Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18904 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 4 | 3 | ne0d 4308 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 ‘cfv 6514 Basecbs 17186 0gc0g 17409 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 |
| This theorem is referenced by: grpn0 18910 dfgrp3 18978 issubg2 19080 grpissubg 19085 ghmrn 19168 gexcl3 19524 gexcl2 19526 sylow1lem1 19535 sylow1lem3 19537 sylow1lem5 19539 pgpfi 19542 pgpfi2 19543 sylow2blem3 19559 slwhash 19561 fislw 19562 gexex 19790 lt6abl 19832 ablfac1lem 20007 ablfac1b 20009 ablfac1c 20010 ablfac1eu 20012 pgpfac1lem2 20014 pgpfac1lem3a 20015 ablfaclem3 20026 dvdsr02 20288 0ringnnzr 20441 lmodbn0 20784 lmodsn0 20787 rmodislmodlem 20842 rmodislmod 20843 islss3 20872 rnglidl1 21149 isclmp 25004 qustriv 33342 dfacbasgrp 43104 |
| Copyright terms: Public domain | W3C validator |