Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version |
Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 18522 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
4 | 3 | ne0d 4266 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Grpcgrp 18492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 |
This theorem is referenced by: grpn0 18526 dfgrp3 18589 issubg2 18685 grpissubg 18690 ghmrn 18762 gexcl3 19107 gexcl2 19109 sylow1lem1 19118 sylow1lem3 19120 sylow1lem5 19122 pgpfi 19125 pgpfi2 19126 sylow2blem3 19142 slwhash 19144 fislw 19145 gexex 19369 lt6abl 19411 ablfac1lem 19586 ablfac1b 19588 ablfac1c 19589 ablfac1eu 19591 pgpfac1lem2 19593 pgpfac1lem3a 19594 ablfaclem3 19605 dvdsr02 19813 lmodbn0 20048 lmodsn0 20051 rmodislmodlem 20105 rmodislmod 20106 rmodislmodOLD 20107 islss3 20136 0ringnnzr 20453 isclmp 24166 qustriv 31462 dfacbasgrp 40849 |
Copyright terms: Public domain | W3C validator |