| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version | ||
| Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18882 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 4 | 3 | ne0d 4291 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 ‘cfv 6488 Basecbs 17124 0gc0g 17347 Grpcgrp 18850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-riota 7311 df-ov 7357 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 |
| This theorem is referenced by: grpn0 18888 dfgrp3 18956 issubg2 19058 grpissubg 19063 ghmrn 19145 gexcl3 19503 gexcl2 19505 sylow1lem1 19514 sylow1lem3 19516 sylow1lem5 19518 pgpfi 19521 pgpfi2 19522 sylow2blem3 19538 slwhash 19540 fislw 19541 gexex 19769 lt6abl 19811 ablfac1lem 19986 ablfac1b 19988 ablfac1c 19989 ablfac1eu 19991 pgpfac1lem2 19993 pgpfac1lem3a 19994 ablfaclem3 20005 dvdsr02 20294 0ringnnzr 20444 lmodbn0 20808 lmodsn0 20811 rmodislmodlem 20866 rmodislmod 20867 islss3 20896 rnglidl1 21173 isclmp 25027 qustriv 33338 dfacbasgrp 43228 |
| Copyright terms: Public domain | W3C validator |