![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version |
Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 19005 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
4 | 3 | ne0d 4365 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 ‘cfv 6573 Basecbs 17258 0gc0g 17499 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: grpn0 19011 dfgrp3 19079 issubg2 19181 grpissubg 19186 ghmrn 19269 gexcl3 19629 gexcl2 19631 sylow1lem1 19640 sylow1lem3 19642 sylow1lem5 19644 pgpfi 19647 pgpfi2 19648 sylow2blem3 19664 slwhash 19666 fislw 19667 gexex 19895 lt6abl 19937 ablfac1lem 20112 ablfac1b 20114 ablfac1c 20115 ablfac1eu 20117 pgpfac1lem2 20119 pgpfac1lem3a 20120 ablfaclem3 20131 dvdsr02 20398 0ringnnzr 20551 lmodbn0 20891 lmodsn0 20894 rmodislmodlem 20949 rmodislmod 20950 rmodislmodOLD 20951 islss3 20980 rnglidl1 21265 isclmp 25149 qustriv 33357 dfacbasgrp 43065 |
Copyright terms: Public domain | W3C validator |