Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version |
Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 18607 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
4 | 3 | ne0d 4269 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ‘cfv 6433 Basecbs 16912 0gc0g 17150 Grpcgrp 18577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 |
This theorem is referenced by: grpn0 18611 dfgrp3 18674 issubg2 18770 grpissubg 18775 ghmrn 18847 gexcl3 19192 gexcl2 19194 sylow1lem1 19203 sylow1lem3 19205 sylow1lem5 19207 pgpfi 19210 pgpfi2 19211 sylow2blem3 19227 slwhash 19229 fislw 19230 gexex 19454 lt6abl 19496 ablfac1lem 19671 ablfac1b 19673 ablfac1c 19674 ablfac1eu 19676 pgpfac1lem2 19678 pgpfac1lem3a 19679 ablfaclem3 19690 dvdsr02 19898 lmodbn0 20133 lmodsn0 20136 rmodislmodlem 20190 rmodislmod 20191 rmodislmodOLD 20192 islss3 20221 0ringnnzr 20540 isclmp 24260 qustriv 31560 dfacbasgrp 40933 |
Copyright terms: Public domain | W3C validator |