| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpbn0 | Structured version Visualization version GIF version | ||
| Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| grpbn0 | ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18878 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 4 | 3 | ne0d 4292 | 1 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 ‘cfv 6481 Basecbs 17120 0gc0g 17343 Grpcgrp 18846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 |
| This theorem is referenced by: grpn0 18884 dfgrp3 18952 issubg2 19054 grpissubg 19059 ghmrn 19142 gexcl3 19500 gexcl2 19502 sylow1lem1 19511 sylow1lem3 19513 sylow1lem5 19515 pgpfi 19518 pgpfi2 19519 sylow2blem3 19535 slwhash 19537 fislw 19538 gexex 19766 lt6abl 19808 ablfac1lem 19983 ablfac1b 19985 ablfac1c 19986 ablfac1eu 19988 pgpfac1lem2 19990 pgpfac1lem3a 19991 ablfaclem3 20002 dvdsr02 20291 0ringnnzr 20441 lmodbn0 20805 lmodsn0 20808 rmodislmodlem 20863 rmodislmod 20864 islss3 20893 rnglidl1 21170 isclmp 25025 qustriv 33327 dfacbasgrp 43147 |
| Copyright terms: Public domain | W3C validator |