Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsrng01 Structured version   Visualization version   GIF version

Theorem lindsrng01 48430
Description: Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20756), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
lindsrng01.b 𝐵 = (Base‘𝑀)
lindsrng01.r 𝑅 = (Scalar‘𝑀)
lindsrng01.e 𝐸 = (Base‘𝑅)
Assertion
Ref Expression
lindsrng01 ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)

Proof of Theorem lindsrng01
Dummy variables 𝑓 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindsrng01.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
2 lindsrng01.e . . . . . . . . 9 𝐸 = (Base‘𝑅)
31, 2lmodsn0 20756 . . . . . . . 8 (𝑀 ∈ LMod → 𝐸 ≠ ∅)
42fvexi 6854 . . . . . . . . . 10 𝐸 ∈ V
5 hasheq0 14304 . . . . . . . . . 10 (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
64, 5ax-mp 5 . . . . . . . . 9 ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)
7 eqneqall 2936 . . . . . . . . . 10 (𝐸 = ∅ → (𝐸 ≠ ∅ → 𝑆 linIndS 𝑀))
87com12 32 . . . . . . . . 9 (𝐸 ≠ ∅ → (𝐸 = ∅ → 𝑆 linIndS 𝑀))
96, 8biimtrid 242 . . . . . . . 8 (𝐸 ≠ ∅ → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
103, 9syl 17 . . . . . . 7 (𝑀 ∈ LMod → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
1110adantr 480 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
1211com12 32 . . . . 5 ((♯‘𝐸) = 0 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
131lmodring 20750 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1413adantr 480 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ Ring)
15 eqid 2729 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
162, 150ring 20411 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (♯‘𝐸) = 1) → 𝐸 = {(0g𝑅)})
1714, 16sylan 580 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝐸 = {(0g𝑅)})
18 simpr 484 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
1918adantr 480 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝑆 ∈ 𝒫 𝐵)
2019adantl 481 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → 𝑆 ∈ 𝒫 𝐵)
21 snex 5386 . . . . . . . . . . . . . 14 {(0g𝑅)} ∈ V
2219, 21jctil 519 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → ({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
2322adantl 481 . . . . . . . . . . . 12 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
24 elmapg 8789 . . . . . . . . . . . 12 (({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) ↔ 𝑓:𝑆⟶{(0g𝑅)}))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) ↔ 𝑓:𝑆⟶{(0g𝑅)}))
26 fvex 6853 . . . . . . . . . . . . . 14 (0g𝑅) ∈ V
2726fconst2 7161 . . . . . . . . . . . . 13 (𝑓:𝑆⟶{(0g𝑅)} ↔ 𝑓 = (𝑆 × {(0g𝑅)}))
28 fconstmpt 5693 . . . . . . . . . . . . . 14 (𝑆 × {(0g𝑅)}) = (𝑥𝑆 ↦ (0g𝑅))
2928eqeq2i 2742 . . . . . . . . . . . . 13 (𝑓 = (𝑆 × {(0g𝑅)}) ↔ 𝑓 = (𝑥𝑆 ↦ (0g𝑅)))
3027, 29bitri 275 . . . . . . . . . . . 12 (𝑓:𝑆⟶{(0g𝑅)} ↔ 𝑓 = (𝑥𝑆 ↦ (0g𝑅)))
31 eqidd 2730 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → (𝑥𝑆 ↦ (0g𝑅)) = (𝑥𝑆 ↦ (0g𝑅)))
32 eqidd 2730 . . . . . . . . . . . . . . . 16 ((((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) ∧ 𝑥 = 𝑣) → (0g𝑅) = (0g𝑅))
33 simpr 484 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → 𝑣𝑆)
34 fvexd 6855 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → (0g𝑅) ∈ V)
3531, 32, 33, 34fvmptd 6957 . . . . . . . . . . . . . . 15 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))
3635ralrimiva 3125 . . . . . . . . . . . . . 14 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))
3736a1d 25 . . . . . . . . . . . . 13 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
38 breq1 5105 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓 finSupp (0g𝑅) ↔ (𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅)))
39 oveq1 7376 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓( linC ‘𝑀)𝑆) = ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆))
4039eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ↔ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)))
4138, 40anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) ↔ ((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀))))
42 fveq1 6839 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓𝑣) = ((𝑥𝑆 ↦ (0g𝑅))‘𝑣))
4342eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓𝑣) = (0g𝑅) ↔ ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
4443ralbidv 3156 . . . . . . . . . . . . . 14 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (∀𝑣𝑆 (𝑓𝑣) = (0g𝑅) ↔ ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
4541, 44imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ (((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))))
4637, 45syl5ibrcom 247 . . . . . . . . . . . 12 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4730, 46biimtrid 242 . . . . . . . . . . 11 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓:𝑆⟶{(0g𝑅)} → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4825, 47sylbid 240 . . . . . . . . . 10 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4948ralrimiv 3124 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))
50 oveq1 7376 . . . . . . . . . . 11 (𝐸 = {(0g𝑅)} → (𝐸m 𝑆) = ({(0g𝑅)} ↑m 𝑆))
5150raleqdv 3296 . . . . . . . . . 10 (𝐸 = {(0g𝑅)} → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5251adantr 480 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5349, 52mpbird 257 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))
54 simpl 482 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
5554ancomd 461 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod))
5655adantl 481 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod))
57 lindsrng01.b . . . . . . . . . 10 𝐵 = (Base‘𝑀)
58 eqid 2729 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
5957, 58, 1, 2, 15islininds 48408 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))))
6056, 59syl 17 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))))
6120, 53, 60mpbir2and 713 . . . . . . 7 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → 𝑆 linIndS 𝑀)
6217, 61mpancom 688 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝑆 linIndS 𝑀)
6362expcom 413 . . . . 5 ((♯‘𝐸) = 1 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
6412, 63jaoi 857 . . . 4 (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
6564expd 415 . . 3 (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → (𝑀 ∈ LMod → (𝑆 ∈ 𝒫 𝐵𝑆 linIndS 𝑀)))
6665com12 32 . 2 (𝑀 ∈ LMod → (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵𝑆 linIndS 𝑀)))
67663imp 1110 1 ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  c0 4292  𝒫 cpw 4559  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776   finSupp cfsupp 9288  0cc0 11044  1c1 11045  chash 14271  Basecbs 17155  Scalarcsca 17199  0gc0g 17378  Ringcrg 20118  LModclmod 20742   linC clinc 48366   linIndS clininds 48402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-ring 20120  df-lmod 20744  df-lininds 48404
This theorem is referenced by:  lindszr  48431
  Copyright terms: Public domain W3C validator