Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsrng01 Structured version   Visualization version   GIF version

Theorem lindsrng01 47227
Description: Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20489), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
lindsrng01.b 𝐡 = (Baseβ€˜π‘€)
lindsrng01.r 𝑅 = (Scalarβ€˜π‘€)
lindsrng01.e 𝐸 = (Baseβ€˜π‘…)
Assertion
Ref Expression
lindsrng01 ((𝑀 ∈ LMod ∧ ((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀)

Proof of Theorem lindsrng01
Dummy variables 𝑓 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindsrng01.r . . . . . . . . 9 𝑅 = (Scalarβ€˜π‘€)
2 lindsrng01.e . . . . . . . . 9 𝐸 = (Baseβ€˜π‘…)
31, 2lmodsn0 20489 . . . . . . . 8 (𝑀 ∈ LMod β†’ 𝐸 β‰  βˆ…)
42fvexi 6905 . . . . . . . . . 10 𝐸 ∈ V
5 hasheq0 14325 . . . . . . . . . 10 (𝐸 ∈ V β†’ ((β™―β€˜πΈ) = 0 ↔ 𝐸 = βˆ…))
64, 5ax-mp 5 . . . . . . . . 9 ((β™―β€˜πΈ) = 0 ↔ 𝐸 = βˆ…)
7 eqneqall 2951 . . . . . . . . . 10 (𝐸 = βˆ… β†’ (𝐸 β‰  βˆ… β†’ 𝑆 linIndS 𝑀))
87com12 32 . . . . . . . . 9 (𝐸 β‰  βˆ… β†’ (𝐸 = βˆ… β†’ 𝑆 linIndS 𝑀))
96, 8biimtrid 241 . . . . . . . 8 (𝐸 β‰  βˆ… β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
103, 9syl 17 . . . . . . 7 (𝑀 ∈ LMod β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
1110adantr 481 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
1211com12 32 . . . . 5 ((β™―β€˜πΈ) = 0 β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
131lmodring 20483 . . . . . . . . 9 (𝑀 ∈ LMod β†’ 𝑅 ∈ Ring)
1413adantr 481 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑅 ∈ Ring)
15 eqid 2732 . . . . . . . . 9 (0gβ€˜π‘…) = (0gβ€˜π‘…)
162, 150ring 20307 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (β™―β€˜πΈ) = 1) β†’ 𝐸 = {(0gβ€˜π‘…)})
1714, 16sylan 580 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝐸 = {(0gβ€˜π‘…)})
18 simpr 485 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 ∈ 𝒫 𝐡)
1918adantr 481 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝑆 ∈ 𝒫 𝐡)
2019adantl 482 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ 𝑆 ∈ 𝒫 𝐡)
21 snex 5431 . . . . . . . . . . . . . 14 {(0gβ€˜π‘…)} ∈ V
2219, 21jctil 520 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ ({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡))
2322adantl 482 . . . . . . . . . . . 12 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ ({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡))
24 elmapg 8835 . . . . . . . . . . . 12 (({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) ↔ 𝑓:π‘†βŸΆ{(0gβ€˜π‘…)}))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) ↔ 𝑓:π‘†βŸΆ{(0gβ€˜π‘…)}))
26 fvex 6904 . . . . . . . . . . . . . 14 (0gβ€˜π‘…) ∈ V
2726fconst2 7208 . . . . . . . . . . . . 13 (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} ↔ 𝑓 = (𝑆 Γ— {(0gβ€˜π‘…)}))
28 fconstmpt 5738 . . . . . . . . . . . . . 14 (𝑆 Γ— {(0gβ€˜π‘…)}) = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))
2928eqeq2i 2745 . . . . . . . . . . . . 13 (𝑓 = (𝑆 Γ— {(0gβ€˜π‘…)}) ↔ 𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
3027, 29bitri 274 . . . . . . . . . . . 12 (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} ↔ 𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
31 eqidd 2733 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
32 eqidd 2733 . . . . . . . . . . . . . . . 16 ((((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) ∧ π‘₯ = 𝑣) β†’ (0gβ€˜π‘…) = (0gβ€˜π‘…))
33 simpr 485 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ 𝑣 ∈ 𝑆)
34 fvexd 6906 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ (0gβ€˜π‘…) ∈ V)
3531, 32, 33, 34fvmptd 7005 . . . . . . . . . . . . . . 15 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))
3635ralrimiva 3146 . . . . . . . . . . . . . 14 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))
3736a1d 25 . . . . . . . . . . . . 13 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
38 breq1 5151 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (𝑓 finSupp (0gβ€˜π‘…) ↔ (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…)))
39 oveq1 7418 . . . . . . . . . . . . . . . 16 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (𝑓( linC β€˜π‘€)𝑆) = ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆))
4039eqeq1d 2734 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)))
4138, 40anbi12d 631 . . . . . . . . . . . . . 14 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€))))
42 fveq1 6890 . . . . . . . . . . . . . . . 16 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (π‘“β€˜π‘£) = ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£))
4342eqeq1d 2734 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((π‘“β€˜π‘£) = (0gβ€˜π‘…) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
4443ralbidv 3177 . . . . . . . . . . . . . 14 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…) ↔ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
4541, 44imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ (((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))))
4637, 45syl5ibrcom 246 . . . . . . . . . . . 12 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4730, 46biimtrid 241 . . . . . . . . . . 11 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4825, 47sylbid 239 . . . . . . . . . 10 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4948ralrimiv 3145 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))
50 oveq1 7418 . . . . . . . . . . 11 (𝐸 = {(0gβ€˜π‘…)} β†’ (𝐸 ↑m 𝑆) = ({(0gβ€˜π‘…)} ↑m 𝑆))
5150raleqdv 3325 . . . . . . . . . 10 (𝐸 = {(0gβ€˜π‘…)} β†’ (βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
5251adantr 481 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
5349, 52mpbird 256 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))
54 simpl 483 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡))
5554ancomd 462 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ (𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod))
5655adantl 482 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod))
57 lindsrng01.b . . . . . . . . . 10 𝐡 = (Baseβ€˜π‘€)
58 eqid 2732 . . . . . . . . . 10 (0gβ€˜π‘€) = (0gβ€˜π‘€)
5957, 58, 1, 2, 15islininds 47205 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod) β†’ (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))))
6056, 59syl 17 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))))
6120, 53, 60mpbir2and 711 . . . . . . 7 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ 𝑆 linIndS 𝑀)
6217, 61mpancom 686 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝑆 linIndS 𝑀)
6362expcom 414 . . . . 5 ((β™―β€˜πΈ) = 1 β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
6412, 63jaoi 855 . . . 4 (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
6564expd 416 . . 3 (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ (𝑀 ∈ LMod β†’ (𝑆 ∈ 𝒫 𝐡 β†’ 𝑆 linIndS 𝑀)))
6665com12 32 . 2 (𝑀 ∈ LMod β†’ (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ (𝑆 ∈ 𝒫 𝐡 β†’ 𝑆 linIndS 𝑀)))
67663imp 1111 1 ((𝑀 ∈ LMod ∧ ((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  Vcvv 3474  βˆ…c0 4322  π’« cpw 4602  {csn 4628   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411   ↑m cmap 8822   finSupp cfsupp 9363  0cc0 11112  1c1 11113  β™―chash 14292  Basecbs 17146  Scalarcsca 17202  0gc0g 17387  Ringcrg 20058  LModclmod 20475   linC clinc 47163   linIndS clininds 47199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-hash 14293  df-0g 17389  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-grp 18824  df-ring 20060  df-lmod 20477  df-lininds 47201
This theorem is referenced by:  lindszr  47228
  Copyright terms: Public domain W3C validator