Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsrng01 Structured version   Visualization version   GIF version

Theorem lindsrng01 45809
Description: Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20136), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
lindsrng01.b 𝐵 = (Base‘𝑀)
lindsrng01.r 𝑅 = (Scalar‘𝑀)
lindsrng01.e 𝐸 = (Base‘𝑅)
Assertion
Ref Expression
lindsrng01 ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)

Proof of Theorem lindsrng01
Dummy variables 𝑓 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindsrng01.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
2 lindsrng01.e . . . . . . . . 9 𝐸 = (Base‘𝑅)
31, 2lmodsn0 20136 . . . . . . . 8 (𝑀 ∈ LMod → 𝐸 ≠ ∅)
42fvexi 6788 . . . . . . . . . 10 𝐸 ∈ V
5 hasheq0 14078 . . . . . . . . . 10 (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
64, 5ax-mp 5 . . . . . . . . 9 ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)
7 eqneqall 2954 . . . . . . . . . 10 (𝐸 = ∅ → (𝐸 ≠ ∅ → 𝑆 linIndS 𝑀))
87com12 32 . . . . . . . . 9 (𝐸 ≠ ∅ → (𝐸 = ∅ → 𝑆 linIndS 𝑀))
96, 8syl5bi 241 . . . . . . . 8 (𝐸 ≠ ∅ → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
103, 9syl 17 . . . . . . 7 (𝑀 ∈ LMod → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
1110adantr 481 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
1211com12 32 . . . . 5 ((♯‘𝐸) = 0 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
131lmodring 20131 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1413adantr 481 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ Ring)
15 eqid 2738 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
162, 150ring 20541 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (♯‘𝐸) = 1) → 𝐸 = {(0g𝑅)})
1714, 16sylan 580 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝐸 = {(0g𝑅)})
18 simpr 485 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
1918adantr 481 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝑆 ∈ 𝒫 𝐵)
2019adantl 482 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → 𝑆 ∈ 𝒫 𝐵)
21 snex 5354 . . . . . . . . . . . . . 14 {(0g𝑅)} ∈ V
2219, 21jctil 520 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → ({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
2322adantl 482 . . . . . . . . . . . 12 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
24 elmapg 8628 . . . . . . . . . . . 12 (({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) ↔ 𝑓:𝑆⟶{(0g𝑅)}))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) ↔ 𝑓:𝑆⟶{(0g𝑅)}))
26 fvex 6787 . . . . . . . . . . . . . 14 (0g𝑅) ∈ V
2726fconst2 7080 . . . . . . . . . . . . 13 (𝑓:𝑆⟶{(0g𝑅)} ↔ 𝑓 = (𝑆 × {(0g𝑅)}))
28 fconstmpt 5649 . . . . . . . . . . . . . 14 (𝑆 × {(0g𝑅)}) = (𝑥𝑆 ↦ (0g𝑅))
2928eqeq2i 2751 . . . . . . . . . . . . 13 (𝑓 = (𝑆 × {(0g𝑅)}) ↔ 𝑓 = (𝑥𝑆 ↦ (0g𝑅)))
3027, 29bitri 274 . . . . . . . . . . . 12 (𝑓:𝑆⟶{(0g𝑅)} ↔ 𝑓 = (𝑥𝑆 ↦ (0g𝑅)))
31 eqidd 2739 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → (𝑥𝑆 ↦ (0g𝑅)) = (𝑥𝑆 ↦ (0g𝑅)))
32 eqidd 2739 . . . . . . . . . . . . . . . 16 ((((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) ∧ 𝑥 = 𝑣) → (0g𝑅) = (0g𝑅))
33 simpr 485 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → 𝑣𝑆)
34 fvexd 6789 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → (0g𝑅) ∈ V)
3531, 32, 33, 34fvmptd 6882 . . . . . . . . . . . . . . 15 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))
3635ralrimiva 3103 . . . . . . . . . . . . . 14 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))
3736a1d 25 . . . . . . . . . . . . 13 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
38 breq1 5077 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓 finSupp (0g𝑅) ↔ (𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅)))
39 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓( linC ‘𝑀)𝑆) = ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆))
4039eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ↔ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)))
4138, 40anbi12d 631 . . . . . . . . . . . . . 14 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) ↔ ((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀))))
42 fveq1 6773 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓𝑣) = ((𝑥𝑆 ↦ (0g𝑅))‘𝑣))
4342eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓𝑣) = (0g𝑅) ↔ ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
4443ralbidv 3112 . . . . . . . . . . . . . 14 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (∀𝑣𝑆 (𝑓𝑣) = (0g𝑅) ↔ ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
4541, 44imbi12d 345 . . . . . . . . . . . . 13 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ (((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))))
4637, 45syl5ibrcom 246 . . . . . . . . . . . 12 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4730, 46syl5bi 241 . . . . . . . . . . 11 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓:𝑆⟶{(0g𝑅)} → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4825, 47sylbid 239 . . . . . . . . . 10 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4948ralrimiv 3102 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))
50 oveq1 7282 . . . . . . . . . . 11 (𝐸 = {(0g𝑅)} → (𝐸m 𝑆) = ({(0g𝑅)} ↑m 𝑆))
5150raleqdv 3348 . . . . . . . . . 10 (𝐸 = {(0g𝑅)} → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5251adantr 481 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5349, 52mpbird 256 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))
54 simpl 483 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
5554ancomd 462 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod))
5655adantl 482 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod))
57 lindsrng01.b . . . . . . . . . 10 𝐵 = (Base‘𝑀)
58 eqid 2738 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
5957, 58, 1, 2, 15islininds 45787 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))))
6056, 59syl 17 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))))
6120, 53, 60mpbir2and 710 . . . . . . 7 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → 𝑆 linIndS 𝑀)
6217, 61mpancom 685 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝑆 linIndS 𝑀)
6362expcom 414 . . . . 5 ((♯‘𝐸) = 1 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
6412, 63jaoi 854 . . . 4 (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
6564expd 416 . . 3 (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → (𝑀 ∈ LMod → (𝑆 ∈ 𝒫 𝐵𝑆 linIndS 𝑀)))
6665com12 32 . 2 (𝑀 ∈ LMod → (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵𝑆 linIndS 𝑀)))
67663imp 1110 1 ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128  0cc0 10871  1c1 10872  chash 14044  Basecbs 16912  Scalarcsca 16965  0gc0g 17150  Ringcrg 19783  LModclmod 20123   linC clinc 45745   linIndS clininds 45781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ring 19785  df-lmod 20125  df-lininds 45783
This theorem is referenced by:  lindszr  45810
  Copyright terms: Public domain W3C validator