Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsrng01 Structured version   Visualization version   GIF version

Theorem lindsrng01 47139
Description: Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20484), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
lindsrng01.b 𝐡 = (Baseβ€˜π‘€)
lindsrng01.r 𝑅 = (Scalarβ€˜π‘€)
lindsrng01.e 𝐸 = (Baseβ€˜π‘…)
Assertion
Ref Expression
lindsrng01 ((𝑀 ∈ LMod ∧ ((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀)

Proof of Theorem lindsrng01
Dummy variables 𝑓 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindsrng01.r . . . . . . . . 9 𝑅 = (Scalarβ€˜π‘€)
2 lindsrng01.e . . . . . . . . 9 𝐸 = (Baseβ€˜π‘…)
31, 2lmodsn0 20484 . . . . . . . 8 (𝑀 ∈ LMod β†’ 𝐸 β‰  βˆ…)
42fvexi 6905 . . . . . . . . . 10 𝐸 ∈ V
5 hasheq0 14322 . . . . . . . . . 10 (𝐸 ∈ V β†’ ((β™―β€˜πΈ) = 0 ↔ 𝐸 = βˆ…))
64, 5ax-mp 5 . . . . . . . . 9 ((β™―β€˜πΈ) = 0 ↔ 𝐸 = βˆ…)
7 eqneqall 2951 . . . . . . . . . 10 (𝐸 = βˆ… β†’ (𝐸 β‰  βˆ… β†’ 𝑆 linIndS 𝑀))
87com12 32 . . . . . . . . 9 (𝐸 β‰  βˆ… β†’ (𝐸 = βˆ… β†’ 𝑆 linIndS 𝑀))
96, 8biimtrid 241 . . . . . . . 8 (𝐸 β‰  βˆ… β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
103, 9syl 17 . . . . . . 7 (𝑀 ∈ LMod β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
1110adantr 481 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
1211com12 32 . . . . 5 ((β™―β€˜πΈ) = 0 β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
131lmodring 20478 . . . . . . . . 9 (𝑀 ∈ LMod β†’ 𝑅 ∈ Ring)
1413adantr 481 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑅 ∈ Ring)
15 eqid 2732 . . . . . . . . 9 (0gβ€˜π‘…) = (0gβ€˜π‘…)
162, 150ring 20302 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (β™―β€˜πΈ) = 1) β†’ 𝐸 = {(0gβ€˜π‘…)})
1714, 16sylan 580 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝐸 = {(0gβ€˜π‘…)})
18 simpr 485 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 ∈ 𝒫 𝐡)
1918adantr 481 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝑆 ∈ 𝒫 𝐡)
2019adantl 482 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ 𝑆 ∈ 𝒫 𝐡)
21 snex 5431 . . . . . . . . . . . . . 14 {(0gβ€˜π‘…)} ∈ V
2219, 21jctil 520 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ ({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡))
2322adantl 482 . . . . . . . . . . . 12 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ ({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡))
24 elmapg 8832 . . . . . . . . . . . 12 (({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) ↔ 𝑓:π‘†βŸΆ{(0gβ€˜π‘…)}))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) ↔ 𝑓:π‘†βŸΆ{(0gβ€˜π‘…)}))
26 fvex 6904 . . . . . . . . . . . . . 14 (0gβ€˜π‘…) ∈ V
2726fconst2 7205 . . . . . . . . . . . . 13 (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} ↔ 𝑓 = (𝑆 Γ— {(0gβ€˜π‘…)}))
28 fconstmpt 5738 . . . . . . . . . . . . . 14 (𝑆 Γ— {(0gβ€˜π‘…)}) = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))
2928eqeq2i 2745 . . . . . . . . . . . . 13 (𝑓 = (𝑆 Γ— {(0gβ€˜π‘…)}) ↔ 𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
3027, 29bitri 274 . . . . . . . . . . . 12 (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} ↔ 𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
31 eqidd 2733 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
32 eqidd 2733 . . . . . . . . . . . . . . . 16 ((((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) ∧ π‘₯ = 𝑣) β†’ (0gβ€˜π‘…) = (0gβ€˜π‘…))
33 simpr 485 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ 𝑣 ∈ 𝑆)
34 fvexd 6906 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ (0gβ€˜π‘…) ∈ V)
3531, 32, 33, 34fvmptd 7005 . . . . . . . . . . . . . . 15 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))
3635ralrimiva 3146 . . . . . . . . . . . . . 14 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))
3736a1d 25 . . . . . . . . . . . . 13 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
38 breq1 5151 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (𝑓 finSupp (0gβ€˜π‘…) ↔ (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…)))
39 oveq1 7415 . . . . . . . . . . . . . . . 16 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (𝑓( linC β€˜π‘€)𝑆) = ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆))
4039eqeq1d 2734 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)))
4138, 40anbi12d 631 . . . . . . . . . . . . . 14 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€))))
42 fveq1 6890 . . . . . . . . . . . . . . . 16 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (π‘“β€˜π‘£) = ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£))
4342eqeq1d 2734 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((π‘“β€˜π‘£) = (0gβ€˜π‘…) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
4443ralbidv 3177 . . . . . . . . . . . . . 14 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…) ↔ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
4541, 44imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ (((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))))
4637, 45syl5ibrcom 246 . . . . . . . . . . . 12 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4730, 46biimtrid 241 . . . . . . . . . . 11 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4825, 47sylbid 239 . . . . . . . . . 10 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4948ralrimiv 3145 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))
50 oveq1 7415 . . . . . . . . . . 11 (𝐸 = {(0gβ€˜π‘…)} β†’ (𝐸 ↑m 𝑆) = ({(0gβ€˜π‘…)} ↑m 𝑆))
5150raleqdv 3325 . . . . . . . . . 10 (𝐸 = {(0gβ€˜π‘…)} β†’ (βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
5251adantr 481 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
5349, 52mpbird 256 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))
54 simpl 483 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡))
5554ancomd 462 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ (𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod))
5655adantl 482 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod))
57 lindsrng01.b . . . . . . . . . 10 𝐡 = (Baseβ€˜π‘€)
58 eqid 2732 . . . . . . . . . 10 (0gβ€˜π‘€) = (0gβ€˜π‘€)
5957, 58, 1, 2, 15islininds 47117 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod) β†’ (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))))
6056, 59syl 17 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))))
6120, 53, 60mpbir2and 711 . . . . . . 7 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ 𝑆 linIndS 𝑀)
6217, 61mpancom 686 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝑆 linIndS 𝑀)
6362expcom 414 . . . . 5 ((β™―β€˜πΈ) = 1 β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
6412, 63jaoi 855 . . . 4 (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
6564expd 416 . . 3 (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ (𝑀 ∈ LMod β†’ (𝑆 ∈ 𝒫 𝐡 β†’ 𝑆 linIndS 𝑀)))
6665com12 32 . 2 (𝑀 ∈ LMod β†’ (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ (𝑆 ∈ 𝒫 𝐡 β†’ 𝑆 linIndS 𝑀)))
67663imp 1111 1 ((𝑀 ∈ LMod ∧ ((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  Vcvv 3474  βˆ…c0 4322  π’« cpw 4602  {csn 4628   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819   finSupp cfsupp 9360  0cc0 11109  1c1 11110  β™―chash 14289  Basecbs 17143  Scalarcsca 17199  0gc0g 17384  Ringcrg 20055  LModclmod 20470   linC clinc 47075   linIndS clininds 47111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-hash 14290  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-ring 20057  df-lmod 20472  df-lininds 47113
This theorem is referenced by:  lindszr  47140
  Copyright terms: Public domain W3C validator