Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsrng01 Structured version   Visualization version   GIF version

Theorem lindsrng01 47149
Description: Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20485), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
lindsrng01.b 𝐡 = (Baseβ€˜π‘€)
lindsrng01.r 𝑅 = (Scalarβ€˜π‘€)
lindsrng01.e 𝐸 = (Baseβ€˜π‘…)
Assertion
Ref Expression
lindsrng01 ((𝑀 ∈ LMod ∧ ((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀)

Proof of Theorem lindsrng01
Dummy variables 𝑓 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindsrng01.r . . . . . . . . 9 𝑅 = (Scalarβ€˜π‘€)
2 lindsrng01.e . . . . . . . . 9 𝐸 = (Baseβ€˜π‘…)
31, 2lmodsn0 20485 . . . . . . . 8 (𝑀 ∈ LMod β†’ 𝐸 β‰  βˆ…)
42fvexi 6906 . . . . . . . . . 10 𝐸 ∈ V
5 hasheq0 14323 . . . . . . . . . 10 (𝐸 ∈ V β†’ ((β™―β€˜πΈ) = 0 ↔ 𝐸 = βˆ…))
64, 5ax-mp 5 . . . . . . . . 9 ((β™―β€˜πΈ) = 0 ↔ 𝐸 = βˆ…)
7 eqneqall 2952 . . . . . . . . . 10 (𝐸 = βˆ… β†’ (𝐸 β‰  βˆ… β†’ 𝑆 linIndS 𝑀))
87com12 32 . . . . . . . . 9 (𝐸 β‰  βˆ… β†’ (𝐸 = βˆ… β†’ 𝑆 linIndS 𝑀))
96, 8biimtrid 241 . . . . . . . 8 (𝐸 β‰  βˆ… β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
103, 9syl 17 . . . . . . 7 (𝑀 ∈ LMod β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
1110adantr 482 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ ((β™―β€˜πΈ) = 0 β†’ 𝑆 linIndS 𝑀))
1211com12 32 . . . . 5 ((β™―β€˜πΈ) = 0 β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
131lmodring 20479 . . . . . . . . 9 (𝑀 ∈ LMod β†’ 𝑅 ∈ Ring)
1413adantr 482 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑅 ∈ Ring)
15 eqid 2733 . . . . . . . . 9 (0gβ€˜π‘…) = (0gβ€˜π‘…)
162, 150ring 20303 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (β™―β€˜πΈ) = 1) β†’ 𝐸 = {(0gβ€˜π‘…)})
1714, 16sylan 581 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝐸 = {(0gβ€˜π‘…)})
18 simpr 486 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 ∈ 𝒫 𝐡)
1918adantr 482 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝑆 ∈ 𝒫 𝐡)
2019adantl 483 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ 𝑆 ∈ 𝒫 𝐡)
21 snex 5432 . . . . . . . . . . . . . 14 {(0gβ€˜π‘…)} ∈ V
2219, 21jctil 521 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ ({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡))
2322adantl 483 . . . . . . . . . . . 12 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ ({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡))
24 elmapg 8833 . . . . . . . . . . . 12 (({(0gβ€˜π‘…)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐡) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) ↔ 𝑓:π‘†βŸΆ{(0gβ€˜π‘…)}))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) ↔ 𝑓:π‘†βŸΆ{(0gβ€˜π‘…)}))
26 fvex 6905 . . . . . . . . . . . . . 14 (0gβ€˜π‘…) ∈ V
2726fconst2 7206 . . . . . . . . . . . . 13 (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} ↔ 𝑓 = (𝑆 Γ— {(0gβ€˜π‘…)}))
28 fconstmpt 5739 . . . . . . . . . . . . . 14 (𝑆 Γ— {(0gβ€˜π‘…)}) = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))
2928eqeq2i 2746 . . . . . . . . . . . . 13 (𝑓 = (𝑆 Γ— {(0gβ€˜π‘…)}) ↔ 𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
3027, 29bitri 275 . . . . . . . . . . . 12 (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} ↔ 𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
31 eqidd 2734 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)))
32 eqidd 2734 . . . . . . . . . . . . . . . 16 ((((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) ∧ π‘₯ = 𝑣) β†’ (0gβ€˜π‘…) = (0gβ€˜π‘…))
33 simpr 486 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ 𝑣 ∈ 𝑆)
34 fvexd 6907 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ (0gβ€˜π‘…) ∈ V)
3531, 32, 33, 34fvmptd 7006 . . . . . . . . . . . . . . 15 (((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) ∧ 𝑣 ∈ 𝑆) β†’ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))
3635ralrimiva 3147 . . . . . . . . . . . . . 14 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))
3736a1d 25 . . . . . . . . . . . . 13 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
38 breq1 5152 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (𝑓 finSupp (0gβ€˜π‘…) ↔ (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…)))
39 oveq1 7416 . . . . . . . . . . . . . . . 16 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (𝑓( linC β€˜π‘€)𝑆) = ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆))
4039eqeq1d 2735 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)))
4138, 40anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€))))
42 fveq1 6891 . . . . . . . . . . . . . . . 16 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (π‘“β€˜π‘£) = ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£))
4342eqeq1d 2735 . . . . . . . . . . . . . . 15 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((π‘“β€˜π‘£) = (0gβ€˜π‘…) ↔ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
4443ralbidv 3178 . . . . . . . . . . . . . 14 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…) ↔ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…)))
4541, 44imbi12d 345 . . . . . . . . . . . . 13 (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ (((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ (((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) finSupp (0gβ€˜π‘…) ∧ ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 ((π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…))β€˜π‘£) = (0gβ€˜π‘…))))
4637, 45syl5ibrcom 246 . . . . . . . . . . . 12 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 = (π‘₯ ∈ 𝑆 ↦ (0gβ€˜π‘…)) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4730, 46biimtrid 241 . . . . . . . . . . 11 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓:π‘†βŸΆ{(0gβ€˜π‘…)} β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4825, 47sylbid 239 . . . . . . . . . 10 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑓 ∈ ({(0gβ€˜π‘…)} ↑m 𝑆) β†’ ((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
4948ralrimiv 3146 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))
50 oveq1 7416 . . . . . . . . . . 11 (𝐸 = {(0gβ€˜π‘…)} β†’ (𝐸 ↑m 𝑆) = ({(0gβ€˜π‘…)} ↑m 𝑆))
5150raleqdv 3326 . . . . . . . . . 10 (𝐸 = {(0gβ€˜π‘…)} β†’ (βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
5251adantr 482 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)) ↔ βˆ€π‘“ ∈ ({(0gβ€˜π‘…)} ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…))))
5349, 52mpbird 257 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))
54 simpl 484 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡))
5554ancomd 463 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ (𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod))
5655adantl 483 . . . . . . . . 9 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod))
57 lindsrng01.b . . . . . . . . . 10 𝐡 = (Baseβ€˜π‘€)
58 eqid 2733 . . . . . . . . . 10 (0gβ€˜π‘€) = (0gβ€˜π‘€)
5957, 58, 1, 2, 15islininds 47127 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod) β†’ (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))))
6056, 59syl 17 . . . . . . . 8 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐡 ∧ βˆ€π‘“ ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp (0gβ€˜π‘…) ∧ (𝑓( linC β€˜π‘€)𝑆) = (0gβ€˜π‘€)) β†’ βˆ€π‘£ ∈ 𝑆 (π‘“β€˜π‘£) = (0gβ€˜π‘…)))))
6120, 53, 60mpbir2and 712 . . . . . . 7 ((𝐸 = {(0gβ€˜π‘…)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1)) β†’ 𝑆 linIndS 𝑀)
6217, 61mpancom 687 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) ∧ (β™―β€˜πΈ) = 1) β†’ 𝑆 linIndS 𝑀)
6362expcom 415 . . . . 5 ((β™―β€˜πΈ) = 1 β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
6412, 63jaoi 856 . . . 4 (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀))
6564expd 417 . . 3 (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ (𝑀 ∈ LMod β†’ (𝑆 ∈ 𝒫 𝐡 β†’ 𝑆 linIndS 𝑀)))
6665com12 32 . 2 (𝑀 ∈ LMod β†’ (((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) β†’ (𝑆 ∈ 𝒫 𝐡 β†’ 𝑆 linIndS 𝑀)))
67663imp 1112 1 ((𝑀 ∈ LMod ∧ ((β™―β€˜πΈ) = 0 ∨ (β™―β€˜πΈ) = 1) ∧ 𝑆 ∈ 𝒫 𝐡) β†’ 𝑆 linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  Vcvv 3475  βˆ…c0 4323  π’« cpw 4603  {csn 4629   class class class wbr 5149   ↦ cmpt 5232   Γ— cxp 5675  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820   finSupp cfsupp 9361  0cc0 11110  1c1 11111  β™―chash 14290  Basecbs 17144  Scalarcsca 17200  0gc0g 17385  Ringcrg 20056  LModclmod 20471   linC clinc 47085   linIndS clininds 47121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-hash 14291  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-ring 20058  df-lmod 20473  df-lininds 47123
This theorem is referenced by:  lindszr  47150
  Copyright terms: Public domain W3C validator