Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrlt | Structured version Visualization version GIF version |
Description: The covers relation implies the less-than relation. (cvpss 30220 analog.) (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrfval.s | ⊢ < = (lt‘𝐾) |
cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrlt | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cvrfval.s | . . 3 ⊢ < = (lt‘𝐾) | |
3 | cvrfval.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrval 36906 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
5 | 4 | simprbda 502 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∃wrex 3054 class class class wbr 5030 ‘cfv 6339 Basecbs 16586 ltcplt 17667 ⋖ ccvr 36899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 df-covers 36903 |
This theorem is referenced by: ncvr1 36909 cvrletrN 36910 cvrnbtwn2 36912 cvrnbtwn3 36913 cvrle 36915 cvrnle 36917 cvrne 36918 0ltat 36928 atlen0 36947 atcvreq0 36951 cvlcvr1 36976 cvrval3 37050 cvrval4N 37051 cvrexchlem 37056 ltcvrntr 37061 cvrntr 37062 cvrat2 37066 atltcvr 37072 1cvratex 37110 ps-2 37115 llnnleat 37150 lplnnle2at 37178 lvolnle3at 37219 lhp0lt 37640 |
Copyright terms: Public domain | W3C validator |