| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrlt | Structured version Visualization version GIF version | ||
| Description: The covers relation implies the less-than relation. (cvpss 32271 analog.) (Contributed by NM, 8-Oct-2011.) |
| Ref | Expression |
|---|---|
| cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrfval.s | ⊢ < = (lt‘𝐾) |
| cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| cvrlt | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cvrfval.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 3 | cvrfval.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | 1, 2, 3 | cvrval 39292 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
| 5 | 4 | simprbda 498 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 ltcplt 18325 ⋖ ccvr 39285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-covers 39289 |
| This theorem is referenced by: ncvr1 39295 cvrletrN 39296 cvrnbtwn2 39298 cvrnbtwn3 39299 cvrle 39301 cvrnle 39303 cvrne 39304 0ltat 39314 atlen0 39333 atcvreq0 39337 cvlcvr1 39362 cvrval3 39437 cvrval4N 39438 cvrexchlem 39443 ltcvrntr 39448 cvrntr 39449 cvrat2 39453 atltcvr 39459 1cvratex 39497 ps-2 39502 llnnleat 39537 lplnnle2at 39565 lvolnle3at 39606 lhp0lt 40027 |
| Copyright terms: Public domain | W3C validator |