| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrlt | Structured version Visualization version GIF version | ||
| Description: The covers relation implies the less-than relation. (cvpss 32305 analog.) (Contributed by NM, 8-Oct-2011.) |
| Ref | Expression |
|---|---|
| cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrfval.s | ⊢ < = (lt‘𝐾) |
| cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| cvrlt | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cvrfval.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 3 | cvrfval.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | 1, 2, 3 | cvrval 39271 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
| 5 | 4 | simprbda 498 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 class class class wbr 5142 ‘cfv 6560 Basecbs 17248 ltcplt 18355 ⋖ ccvr 39264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-covers 39268 |
| This theorem is referenced by: ncvr1 39274 cvrletrN 39275 cvrnbtwn2 39277 cvrnbtwn3 39278 cvrle 39280 cvrnle 39282 cvrne 39283 0ltat 39293 atlen0 39312 atcvreq0 39316 cvlcvr1 39341 cvrval3 39416 cvrval4N 39417 cvrexchlem 39422 ltcvrntr 39427 cvrntr 39428 cvrat2 39432 atltcvr 39438 1cvratex 39476 ps-2 39481 llnnleat 39516 lplnnle2at 39544 lvolnle3at 39585 lhp0lt 40006 |
| Copyright terms: Public domain | W3C validator |