Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrlt Structured version   Visualization version   GIF version

Theorem cvrlt 37284
Description: The covers relation implies the less-than relation. (cvpss 30647 analog.) (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrlt (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)

Proof of Theorem cvrlt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . 3 𝐵 = (Base‘𝐾)
2 cvrfval.s . . 3 < = (lt‘𝐾)
3 cvrfval.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 37283 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
54simprbda 499 1 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  Basecbs 16912  ltcplt 18026  ccvr 37276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-covers 37280
This theorem is referenced by:  ncvr1  37286  cvrletrN  37287  cvrnbtwn2  37289  cvrnbtwn3  37290  cvrle  37292  cvrnle  37294  cvrne  37295  0ltat  37305  atlen0  37324  atcvreq0  37328  cvlcvr1  37353  cvrval3  37427  cvrval4N  37428  cvrexchlem  37433  ltcvrntr  37438  cvrntr  37439  cvrat2  37443  atltcvr  37449  1cvratex  37487  ps-2  37492  llnnleat  37527  lplnnle2at  37555  lvolnle3at  37596  lhp0lt  38017
  Copyright terms: Public domain W3C validator