Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrlt Structured version   Visualization version   GIF version

Theorem cvrlt 37211
Description: The covers relation implies the less-than relation. (cvpss 30548 analog.) (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrlt (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)

Proof of Theorem cvrlt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . 3 𝐵 = (Base‘𝐾)
2 cvrfval.s . . 3 < = (lt‘𝐾)
3 cvrfval.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 37210 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
54simprbda 498 1 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  Basecbs 16840  ltcplt 17941  ccvr 37203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-covers 37207
This theorem is referenced by:  ncvr1  37213  cvrletrN  37214  cvrnbtwn2  37216  cvrnbtwn3  37217  cvrle  37219  cvrnle  37221  cvrne  37222  0ltat  37232  atlen0  37251  atcvreq0  37255  cvlcvr1  37280  cvrval3  37354  cvrval4N  37355  cvrexchlem  37360  ltcvrntr  37365  cvrntr  37366  cvrat2  37370  atltcvr  37376  1cvratex  37414  ps-2  37419  llnnleat  37454  lplnnle2at  37482  lvolnle3at  37523  lhp0lt  37944
  Copyright terms: Public domain W3C validator