Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrlt | Structured version Visualization version GIF version |
Description: The covers relation implies the less-than relation. (cvpss 30647 analog.) (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrfval.s | ⊢ < = (lt‘𝐾) |
cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrlt | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cvrfval.s | . . 3 ⊢ < = (lt‘𝐾) | |
3 | cvrfval.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrval 37283 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
5 | 4 | simprbda 499 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 ltcplt 18026 ⋖ ccvr 37276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-covers 37280 |
This theorem is referenced by: ncvr1 37286 cvrletrN 37287 cvrnbtwn2 37289 cvrnbtwn3 37290 cvrle 37292 cvrnle 37294 cvrne 37295 0ltat 37305 atlen0 37324 atcvreq0 37328 cvlcvr1 37353 cvrval3 37427 cvrval4N 37428 cvrexchlem 37433 ltcvrntr 37438 cvrntr 37439 cvrat2 37443 atltcvr 37449 1cvratex 37487 ps-2 37492 llnnleat 37527 lplnnle2at 37555 lvolnle3at 37596 lhp0lt 38017 |
Copyright terms: Public domain | W3C validator |