Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrlt Structured version   Visualization version   GIF version

Theorem cvrlt 39226
Description: The covers relation implies the less-than relation. (cvpss 32317 analog.) (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrlt (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)

Proof of Theorem cvrlt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . 3 𝐵 = (Base‘𝐾)
2 cvrfval.s . . 3 < = (lt‘𝐾)
3 cvrfval.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 39225 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
54simprbda 498 1 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  Basecbs 17258  ltcplt 18378  ccvr 39218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-covers 39222
This theorem is referenced by:  ncvr1  39228  cvrletrN  39229  cvrnbtwn2  39231  cvrnbtwn3  39232  cvrle  39234  cvrnle  39236  cvrne  39237  0ltat  39247  atlen0  39266  atcvreq0  39270  cvlcvr1  39295  cvrval3  39370  cvrval4N  39371  cvrexchlem  39376  ltcvrntr  39381  cvrntr  39382  cvrat2  39386  atltcvr  39392  1cvratex  39430  ps-2  39435  llnnleat  39470  lplnnle2at  39498  lvolnle3at  39539  lhp0lt  39960
  Copyright terms: Public domain W3C validator