| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrlt | Structured version Visualization version GIF version | ||
| Description: The covers relation implies the less-than relation. (cvpss 32265 analog.) (Contributed by NM, 8-Oct-2011.) |
| Ref | Expression |
|---|---|
| cvrfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrfval.s | ⊢ < = (lt‘𝐾) |
| cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| cvrlt | ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cvrfval.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 3 | cvrfval.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | 1, 2, 3 | cvrval 39378 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) |
| 5 | 4 | simprbda 498 | 1 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 ltcplt 18214 ⋖ ccvr 39371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-covers 39375 |
| This theorem is referenced by: ncvr1 39381 cvrletrN 39382 cvrnbtwn2 39384 cvrnbtwn3 39385 cvrle 39387 cvrnle 39389 cvrne 39390 0ltat 39400 atlen0 39419 atcvreq0 39423 cvlcvr1 39448 cvrval3 39522 cvrval4N 39523 cvrexchlem 39528 ltcvrntr 39533 cvrntr 39534 cvrat2 39538 atltcvr 39544 1cvratex 39582 ps-2 39587 llnnleat 39622 lplnnle2at 39650 lvolnle3at 39691 lhp0lt 40112 |
| Copyright terms: Public domain | W3C validator |