Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltltncvr Structured version   Visualization version   GIF version

Theorem ltltncvr 39390
Description: A chained strong ordering is not a covers relation. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
ltltncvr.b 𝐵 = (Base‘𝐾)
ltltncvr.s < = (lt‘𝐾)
ltltncvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
ltltncvr ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍))

Proof of Theorem ltltncvr
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → 𝐾𝐴)
2 simplr1 1216 . . . 4 (((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → 𝑋𝐵)
3 simplr3 1218 . . . 4 (((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → 𝑍𝐵)
4 simplr2 1217 . . . 4 (((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → 𝑌𝐵)
5 simpr 484 . . . 4 (((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → 𝑋𝐶𝑍)
6 ltltncvr.b . . . . 5 𝐵 = (Base‘𝐾)
7 ltltncvr.s . . . . 5 < = (lt‘𝐾)
8 ltltncvr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
96, 7, 8cvrnbtwn 39237 . . . 4 ((𝐾𝐴 ∧ (𝑋𝐵𝑍𝐵𝑌𝐵) ∧ 𝑋𝐶𝑍) → ¬ (𝑋 < 𝑌𝑌 < 𝑍))
101, 2, 3, 4, 5, 9syl131anc 1385 . . 3 (((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → ¬ (𝑋 < 𝑌𝑌 < 𝑍))
1110ex 412 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 → ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1211con2d 134 1 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  Basecbs 17155  ltcplt 18245  ccvr 39228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-covers 39232
This theorem is referenced by:  ltcvrntr  39391
  Copyright terms: Public domain W3C validator