| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltltncvr | Structured version Visualization version GIF version | ||
| Description: A chained strong ordering is not a covers relation. (Contributed by NM, 18-Jun-2012.) |
| Ref | Expression |
|---|---|
| ltltncvr.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltltncvr.s | ⊢ < = (lt‘𝐾) |
| ltltncvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| Ref | Expression |
|---|---|
| ltltncvr | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝐾 ∈ 𝐴) | |
| 2 | simplr1 1216 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝑋 ∈ 𝐵) | |
| 3 | simplr3 1218 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝑍 ∈ 𝐵) | |
| 4 | simplr2 1217 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝑌 ∈ 𝐵) | |
| 5 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝑋𝐶𝑍) | |
| 6 | ltltncvr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | ltltncvr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 8 | ltltncvr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 9 | 6, 7, 8 | cvrnbtwn 39235 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑍) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍)) |
| 10 | 1, 2, 3, 4, 5, 9 | syl131anc 1385 | . . 3 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍)) |
| 11 | 10 | ex 412 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑍 → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
| 12 | 11 | con2d 134 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 Basecbs 17226 ltcplt 18318 ⋖ ccvr 39226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-covers 39230 |
| This theorem is referenced by: ltcvrntr 39389 |
| Copyright terms: Public domain | W3C validator |