| Step | Hyp | Ref
| Expression |
| 1 | | mgmhmrcl 18681 |
. . . 4
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| 2 | 1 | simprd 495 |
. . 3
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝑇 ∈ Mgm) |
| 3 | | resmgmhm.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑋) |
| 4 | 3 | submgmmgm 18695 |
. . 3
⊢ (𝑋 ∈ (SubMgm‘𝑆) → 𝑈 ∈ Mgm) |
| 5 | 2, 4 | anim12ci 614 |
. 2
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝑈 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| 6 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 7 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 8 | 6, 7 | mgmhmf 18684 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 9 | 6 | submgmss 18692 |
. . . . 5
⊢ (𝑋 ∈ (SubMgm‘𝑆) → 𝑋 ⊆ (Base‘𝑆)) |
| 10 | | fssres 6755 |
. . . . 5
⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
| 11 | 8, 9, 10 | syl2an 596 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
| 12 | 9 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → 𝑋 ⊆ (Base‘𝑆)) |
| 13 | 3, 6 | ressbas2 17265 |
. . . . . 6
⊢ (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈)) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → 𝑋 = (Base‘𝑈)) |
| 15 | 14 | feq2d 6703 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ((𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇))) |
| 16 | 11, 15 | mpbid 232 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇)) |
| 17 | | simpll 766 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
| 18 | 9 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑆)) |
| 19 | | simprl 770 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
| 20 | 18, 19 | sseldd 3966 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑆)) |
| 21 | | simprr 772 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 22 | 18, 21 | sseldd 3966 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ (Base‘𝑆)) |
| 23 | | eqid 2734 |
. . . . . . . 8
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 24 | | eqid 2734 |
. . . . . . . 8
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 25 | 6, 23, 24 | mgmhmlin 18686 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 26 | 17, 20, 22, 25 | syl3anc 1372 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 27 | 23 | submgmcl 18694 |
. . . . . . . . 9
⊢ ((𝑋 ∈ (SubMgm‘𝑆) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
| 28 | 27 | 3expb 1120 |
. . . . . . . 8
⊢ ((𝑋 ∈ (SubMgm‘𝑆) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
| 29 | 28 | adantll 714 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
| 30 | | fvres 6906 |
. . . . . . 7
⊢ ((𝑥(+g‘𝑆)𝑦) ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (𝐹‘(𝑥(+g‘𝑆)𝑦))) |
| 31 | 29, 30 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (𝐹‘(𝑥(+g‘𝑆)𝑦))) |
| 32 | | fvres 6906 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑥) = (𝐹‘𝑥)) |
| 33 | | fvres 6906 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑦) = (𝐹‘𝑦)) |
| 34 | 32, 33 | oveqan12d 7433 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 35 | 34 | adantl 481 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 36 | 26, 31, 35 | 3eqtr4d 2779 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
| 37 | 36 | ralrimivva 3189 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
| 38 | 3, 23 | ressplusg 17312 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMgm‘𝑆) →
(+g‘𝑆) =
(+g‘𝑈)) |
| 39 | 38 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (+g‘𝑆) = (+g‘𝑈)) |
| 40 | 39 | oveqd 7431 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑈)𝑦)) |
| 41 | 40 | fveqeq2d 6895 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
| 42 | 14, 41 | raleqbidv 3330 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
| 43 | 14, 42 | raleqbidv 3330 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
| 44 | 37, 43 | mpbid 232 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
| 45 | 16, 44 | jca 511 |
. 2
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → ((𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
| 46 | | eqid 2734 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 47 | | eqid 2734 |
. . 3
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 48 | 46, 7, 47, 24 | ismgmhm 18683 |
. 2
⊢ ((𝐹 ↾ 𝑋) ∈ (𝑈 MgmHom 𝑇) ↔ ((𝑈 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ ((𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))))) |
| 49 | 5, 45, 48 | sylanbrc 583 |
1
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 MgmHom 𝑇)) |