Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resmgmhm2 Structured version   Visualization version   GIF version

Theorem resmgmhm2 45241
Description: One direction of resmgmhm2b 45242. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
resmgmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmgmhm2 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))

Proof of Theorem resmgmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 45223 . . . 4 (𝐹 ∈ (𝑆 MgmHom 𝑈) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm))
21simpld 494 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝑆 ∈ Mgm)
3 submgmrcl 45224 . . 3 (𝑋 ∈ (SubMgm‘𝑇) → 𝑇 ∈ Mgm)
42, 3anim12i 612 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
5 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2738 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
75, 6mgmhmf 45226 . . . 4 (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
8 resmgmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
98submgmbas 45238 . . . . 5 (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈))
10 eqid 2738 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
1110submgmss 45234 . . . . 5 (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 ⊆ (Base‘𝑇))
129, 11eqsstrrd 3956 . . . 4 (𝑋 ∈ (SubMgm‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇))
13 fss 6601 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
147, 12, 13syl2an 595 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
15 eqid 2738 . . . . . . . 8 (+g𝑆) = (+g𝑆)
16 eqid 2738 . . . . . . . 8 (+g𝑈) = (+g𝑈)
175, 15, 16mgmhmlin 45228 . . . . . . 7 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
18173expb 1118 . . . . . 6 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
1918adantlr 711 . . . . 5 (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
20 eqid 2738 . . . . . . . 8 (+g𝑇) = (+g𝑇)
218, 20ressplusg 16926 . . . . . . 7 (𝑋 ∈ (SubMgm‘𝑇) → (+g𝑇) = (+g𝑈))
2221ad2antlr 723 . . . . . 6 (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2322oveqd 7272 . . . . 5 (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2419, 23eqtr4d 2781 . . . 4 (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2524ralrimivva 3114 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2614, 25jca 511 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦))))
275, 10, 15, 20ismgmhm 45225 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))))
284, 26, 27sylanbrc 582 1 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  Mgmcmgm 18239   MgmHom cmgmhm 45219  SubMgmcsubmgm 45220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mgm 18241  df-mgmhm 45221  df-submgm 45222
This theorem is referenced by:  resmgmhm2b  45242
  Copyright terms: Public domain W3C validator