Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resmgmhm2 | Structured version Visualization version GIF version |
Description: One direction of resmgmhm2b 45242. (Contributed by AV, 26-Feb-2020.) |
Ref | Expression |
---|---|
resmgmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
Ref | Expression |
---|---|
resmgmhm2 | ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmhmrcl 45223 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm)) | |
2 | 1 | simpld 494 | . . 3 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝑆 ∈ Mgm) |
3 | submgmrcl 45224 | . . 3 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑇 ∈ Mgm) | |
4 | 2, 3 | anim12i 612 | . 2 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
5 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
6 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
7 | 5, 6 | mgmhmf 45226 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈)) |
8 | resmgmhm2.u | . . . . . 6 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
9 | 8 | submgmbas 45238 | . . . . 5 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈)) |
10 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
11 | 10 | submgmss 45234 | . . . . 5 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 ⊆ (Base‘𝑇)) |
12 | 9, 11 | eqsstrrd 3956 | . . . 4 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇)) |
13 | fss 6601 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | |
14 | 7, 12, 13 | syl2an 595 | . . 3 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
15 | eqid 2738 | . . . . . . . 8 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
16 | eqid 2738 | . . . . . . . 8 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
17 | 5, 15, 16 | mgmhmlin 45228 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
18 | 17 | 3expb 1118 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
19 | 18 | adantlr 711 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
20 | eqid 2738 | . . . . . . . 8 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
21 | 8, 20 | ressplusg 16926 | . . . . . . 7 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → (+g‘𝑇) = (+g‘𝑈)) |
22 | 21 | ad2antlr 723 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g‘𝑇) = (+g‘𝑈)) |
23 | 22 | oveqd 7272 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
24 | 19, 23 | eqtr4d 2781 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
25 | 24 | ralrimivva 3114 | . . 3 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
26 | 14, 25 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)))) |
27 | 5, 10, 15, 20 | ismgmhm 45225 | . 2 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))))) |
28 | 4, 26, 27 | sylanbrc 582 | 1 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 +gcplusg 16888 Mgmcmgm 18239 MgmHom cmgmhm 45219 SubMgmcsubmgm 45220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mgm 18241 df-mgmhm 45221 df-submgm 45222 |
This theorem is referenced by: resmgmhm2b 45242 |
Copyright terms: Public domain | W3C validator |