![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resmgmhm2 | Structured version Visualization version GIF version |
Description: One direction of resmgmhm2b 43375. (Contributed by AV, 26-Feb-2020.) |
Ref | Expression |
---|---|
resmgmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
Ref | Expression |
---|---|
resmgmhm2 | ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmhmrcl 43356 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm)) | |
2 | 1 | simpld 487 | . . 3 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝑆 ∈ Mgm) |
3 | submgmrcl 43357 | . . 3 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑇 ∈ Mgm) | |
4 | 2, 3 | anim12i 603 | . 2 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
5 | eqid 2772 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
6 | eqid 2772 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
7 | 5, 6 | mgmhmf 43359 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈)) |
8 | resmgmhm2.u | . . . . . 6 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
9 | 8 | submgmbas 43371 | . . . . 5 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈)) |
10 | eqid 2772 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
11 | 10 | submgmss 43367 | . . . . 5 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 ⊆ (Base‘𝑇)) |
12 | 9, 11 | eqsstr3d 3892 | . . . 4 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇)) |
13 | fss 6351 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | |
14 | 7, 12, 13 | syl2an 586 | . . 3 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
15 | eqid 2772 | . . . . . . . 8 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
16 | eqid 2772 | . . . . . . . 8 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
17 | 5, 15, 16 | mgmhmlin 43361 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
18 | 17 | 3expb 1100 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
19 | 18 | adantlr 702 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
20 | eqid 2772 | . . . . . . . 8 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
21 | 8, 20 | ressplusg 16458 | . . . . . . 7 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → (+g‘𝑇) = (+g‘𝑈)) |
22 | 21 | ad2antlr 714 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g‘𝑇) = (+g‘𝑈)) |
23 | 22 | oveqd 6987 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
24 | 19, 23 | eqtr4d 2811 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
25 | 24 | ralrimivva 3135 | . . 3 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
26 | 14, 25 | jca 504 | . 2 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)))) |
27 | 5, 10, 15, 20 | ismgmhm 43358 | . 2 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))))) |
28 | 4, 26, 27 | sylanbrc 575 | 1 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∀wral 3082 ⊆ wss 3825 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 ↾s cress 16330 +gcplusg 16411 Mgmcmgm 17698 MgmHom cmgmhm 43352 SubMgmcsubmgm 43353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mgm 17700 df-mgmhm 43354 df-submgm 43355 |
This theorem is referenced by: resmgmhm2b 43375 |
Copyright terms: Public domain | W3C validator |