![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resmgmhm2 | Structured version Visualization version GIF version |
Description: One direction of resmgmhm2b 18739. (Contributed by AV, 26-Feb-2020.) |
Ref | Expression |
---|---|
resmgmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
Ref | Expression |
---|---|
resmgmhm2 | ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmhmrcl 18720 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm)) | |
2 | 1 | simpld 494 | . . 3 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝑆 ∈ Mgm) |
3 | submgmrcl 18721 | . . 3 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑇 ∈ Mgm) | |
4 | 2, 3 | anim12i 613 | . 2 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
5 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
6 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
7 | 5, 6 | mgmhmf 18723 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈)) |
8 | resmgmhm2.u | . . . . . 6 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
9 | 8 | submgmbas 18735 | . . . . 5 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈)) |
10 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
11 | 10 | submgmss 18731 | . . . . 5 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 ⊆ (Base‘𝑇)) |
12 | 9, 11 | eqsstrrd 4035 | . . . 4 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇)) |
13 | fss 6753 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | |
14 | 7, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
15 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
16 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
17 | 5, 15, 16 | mgmhmlin 18725 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
18 | 17 | 3expb 1119 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
19 | 18 | adantlr 715 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
20 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
21 | 8, 20 | ressplusg 17336 | . . . . . . 7 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → (+g‘𝑇) = (+g‘𝑈)) |
22 | 21 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g‘𝑇) = (+g‘𝑈)) |
23 | 22 | oveqd 7448 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
24 | 19, 23 | eqtr4d 2778 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
25 | 24 | ralrimivva 3200 | . . 3 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
26 | 14, 25 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)))) |
27 | 5, 10, 15, 20 | ismgmhm 18722 | . 2 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))))) |
28 | 4, 26, 27 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 +gcplusg 17298 Mgmcmgm 18664 MgmHom cmgmhm 18716 SubMgmcsubmgm 18717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mgm 18666 df-mgmhm 18718 df-submgm 18719 |
This theorem is referenced by: resmgmhm2b 18739 |
Copyright terms: Public domain | W3C validator |