MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmgmhm2 Structured version   Visualization version   GIF version

Theorem resmgmhm2 18690
Description: One direction of resmgmhm2b 18691. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
resmgmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmgmhm2 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))

Proof of Theorem resmgmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 18672 . . . 4 (𝐹 ∈ (𝑆 MgmHom 𝑈) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm))
21simpld 494 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝑆 ∈ Mgm)
3 submgmrcl 18673 . . 3 (𝑋 ∈ (SubMgm‘𝑇) → 𝑇 ∈ Mgm)
42, 3anim12i 613 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
5 eqid 2735 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2735 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
75, 6mgmhmf 18675 . . . 4 (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
8 resmgmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
98submgmbas 18687 . . . . 5 (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈))
10 eqid 2735 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
1110submgmss 18683 . . . . 5 (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 ⊆ (Base‘𝑇))
129, 11eqsstrrd 3994 . . . 4 (𝑋 ∈ (SubMgm‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇))
13 fss 6722 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
147, 12, 13syl2an 596 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
15 eqid 2735 . . . . . . . 8 (+g𝑆) = (+g𝑆)
16 eqid 2735 . . . . . . . 8 (+g𝑈) = (+g𝑈)
175, 15, 16mgmhmlin 18677 . . . . . . 7 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
18173expb 1120 . . . . . 6 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
1918adantlr 715 . . . . 5 (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
20 eqid 2735 . . . . . . . 8 (+g𝑇) = (+g𝑇)
218, 20ressplusg 17305 . . . . . . 7 (𝑋 ∈ (SubMgm‘𝑇) → (+g𝑇) = (+g𝑈))
2221ad2antlr 727 . . . . . 6 (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2322oveqd 7422 . . . . 5 (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2419, 23eqtr4d 2773 . . . 4 (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2524ralrimivva 3187 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2614, 25jca 511 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦))))
275, 10, 15, 20ismgmhm 18674 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))))
284, 26, 27sylanbrc 583 1 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  +gcplusg 17271  Mgmcmgm 18616   MgmHom cmgmhm 18668  SubMgmcsubmgm 18669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mgm 18618  df-mgmhm 18670  df-submgm 18671
This theorem is referenced by:  resmgmhm2b  18691
  Copyright terms: Public domain W3C validator