| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resmgmhm2 | Structured version Visualization version GIF version | ||
| Description: One direction of resmgmhm2b 18691. (Contributed by AV, 26-Feb-2020.) |
| Ref | Expression |
|---|---|
| resmgmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
| Ref | Expression |
|---|---|
| resmgmhm2 | ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmhmrcl 18672 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm)) | |
| 2 | 1 | simpld 494 | . . 3 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝑆 ∈ Mgm) |
| 3 | submgmrcl 18673 | . . 3 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑇 ∈ Mgm) | |
| 4 | 2, 3 | anim12i 613 | . 2 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| 5 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 7 | 5, 6 | mgmhmf 18675 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈)) |
| 8 | resmgmhm2.u | . . . . . 6 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
| 9 | 8 | submgmbas 18687 | . . . . 5 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈)) |
| 10 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 11 | 10 | submgmss 18683 | . . . . 5 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 ⊆ (Base‘𝑇)) |
| 12 | 9, 11 | eqsstrrd 3994 | . . . 4 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇)) |
| 13 | fss 6722 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) | |
| 14 | 7, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 15 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 16 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 17 | 5, 15, 16 | mgmhmlin 18677 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 18 | 17 | 3expb 1120 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 19 | 18 | adantlr 715 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 20 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 21 | 8, 20 | ressplusg 17305 | . . . . . . 7 ⊢ (𝑋 ∈ (SubMgm‘𝑇) → (+g‘𝑇) = (+g‘𝑈)) |
| 22 | 21 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g‘𝑇) = (+g‘𝑈)) |
| 23 | 22 | oveqd 7422 | . . . . 5 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 24 | 19, 23 | eqtr4d 2773 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 25 | 24 | ralrimivva 3187 | . . 3 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 26 | 14, 25 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)))) |
| 27 | 5, 10, 15, 20 | ismgmhm 18674 | . 2 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))))) |
| 28 | 4, 26, 27 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 +gcplusg 17271 Mgmcmgm 18616 MgmHom cmgmhm 18668 SubMgmcsubmgm 18669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mgm 18618 df-mgmhm 18670 df-submgm 18671 |
| This theorem is referenced by: resmgmhm2b 18691 |
| Copyright terms: Public domain | W3C validator |