Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmeql Structured version   Visualization version   GIF version

Theorem mgmhmeql 46087
Description: The equalizer of two magma homomorphisms is a submagma. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
mgmhmeql ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMgm‘𝑆))

Proof of Theorem mgmhmeql
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2736 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
31, 2mgmhmf 46068 . . . . 5 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
43adantr 481 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
54ffnd 6669 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
61, 2mgmhmf 46068 . . . . 5 (𝐺 ∈ (𝑆 MgmHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
76adantl 482 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
87ffnd 6669 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝐺 Fn (Base‘𝑆))
9 fndmin 6995 . . 3 ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
105, 8, 9syl2anc 584 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
11 ssrab2 4037 . . . 4 {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆)
1211a1i 11 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆))
13 mgmhmrcl 46065 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
1413simpld 495 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm)
1514adantr 481 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm)
1615ad2antrr 724 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑆 ∈ Mgm)
17 simplrl 775 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑥 ∈ (Base‘𝑆))
18 simprl 769 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑦 ∈ (Base‘𝑆))
19 eqid 2736 . . . . . . . . . . . 12 (+g𝑆) = (+g𝑆)
201, 19mgmcl 18500 . . . . . . . . . . 11 ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
2116, 17, 18, 20syl3anc 1371 . . . . . . . . . 10 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
22 simplrr 776 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹𝑥) = (𝐺𝑥))
23 simprr 771 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹𝑦) = (𝐺𝑦))
2422, 23oveq12d 7375 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
25 simplll 773 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
26 eqid 2736 . . . . . . . . . . . . 13 (+g𝑇) = (+g𝑇)
271, 19, 26mgmhmlin 46070 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2825, 17, 18, 27syl3anc 1371 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
29 simpllr 774 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐺 ∈ (𝑆 MgmHom 𝑇))
301, 19, 26mgmhmlin 46070 . . . . . . . . . . . 12 ((𝐺 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
3129, 17, 18, 30syl3anc 1371 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
3224, 28, 313eqtr4d 2786 . . . . . . . . . 10 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = (𝐺‘(𝑥(+g𝑆)𝑦)))
33 fveq2 6842 . . . . . . . . . . . 12 (𝑧 = (𝑥(+g𝑆)𝑦) → (𝐹𝑧) = (𝐹‘(𝑥(+g𝑆)𝑦)))
34 fveq2 6842 . . . . . . . . . . . 12 (𝑧 = (𝑥(+g𝑆)𝑦) → (𝐺𝑧) = (𝐺‘(𝑥(+g𝑆)𝑦)))
3533, 34eqeq12d 2752 . . . . . . . . . . 11 (𝑧 = (𝑥(+g𝑆)𝑦) → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘(𝑥(+g𝑆)𝑦)) = (𝐺‘(𝑥(+g𝑆)𝑦))))
3635elrab 3645 . . . . . . . . . 10 ((𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ((𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑥(+g𝑆)𝑦)) = (𝐺‘(𝑥(+g𝑆)𝑦))))
3721, 32, 36sylanbrc 583 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3837expr 457 . . . . . . . 8 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
3938ralrimiva 3143 . . . . . . 7 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
40 fveq2 6842 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
41 fveq2 6842 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
4240, 41eqeq12d 2752 . . . . . . . 8 (𝑧 = 𝑦 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑦) = (𝐺𝑦)))
4342ralrab 3651 . . . . . . 7 (∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4439, 43sylibr 233 . . . . . 6 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
4544expr 457 . . . . 5 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4645ralrimiva 3143 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
47 fveq2 6842 . . . . . 6 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
48 fveq2 6842 . . . . . 6 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
4947, 48eqeq12d 2752 . . . . 5 (𝑧 = 𝑥 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑥) = (𝐺𝑥)))
5049ralrab 3651 . . . 4 (∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑥 ∈ (Base‘𝑆)((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
5146, 50sylibr 233 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
521, 19issubmgm 46073 . . . 4 (𝑆 ∈ Mgm → ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMgm‘𝑆) ↔ ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆) ∧ ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
5315, 52syl 17 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMgm‘𝑆) ↔ ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆) ∧ ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
5412, 51, 53mpbir2and 711 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMgm‘𝑆))
5510, 54eqeltrd 2838 1 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMgm‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  cin 3909  wss 3910  dom cdm 5633   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Mgmcmgm 18495   MgmHom cmgmhm 46061  SubMgmcsubmgm 46062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-mgm 18497  df-mgmhm 46063  df-submgm 46064
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator