Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmeql Structured version   Visualization version   GIF version

Theorem mgmhmeql 44064
Description: The equalizer of two magma homomorphisms is a submagma. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
mgmhmeql ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMgm‘𝑆))

Proof of Theorem mgmhmeql
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2821 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
31, 2mgmhmf 44045 . . . . 5 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
43adantr 483 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
54ffnd 6509 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
61, 2mgmhmf 44045 . . . . 5 (𝐺 ∈ (𝑆 MgmHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
76adantl 484 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
87ffnd 6509 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝐺 Fn (Base‘𝑆))
9 fndmin 6809 . . 3 ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
105, 8, 9syl2anc 586 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
11 ssrab2 4055 . . . 4 {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆)
1211a1i 11 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆))
13 mgmhmrcl 44042 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
1413simpld 497 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm)
1514adantr 483 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm)
1615ad2antrr 724 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑆 ∈ Mgm)
17 simplrl 775 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑥 ∈ (Base‘𝑆))
18 simprl 769 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑦 ∈ (Base‘𝑆))
19 eqid 2821 . . . . . . . . . . . 12 (+g𝑆) = (+g𝑆)
201, 19mgmcl 17849 . . . . . . . . . . 11 ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
2116, 17, 18, 20syl3anc 1367 . . . . . . . . . 10 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
22 simplrr 776 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹𝑥) = (𝐺𝑥))
23 simprr 771 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹𝑦) = (𝐺𝑦))
2422, 23oveq12d 7168 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
25 simplll 773 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
26 eqid 2821 . . . . . . . . . . . . 13 (+g𝑇) = (+g𝑇)
271, 19, 26mgmhmlin 44047 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2825, 17, 18, 27syl3anc 1367 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
29 simpllr 774 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐺 ∈ (𝑆 MgmHom 𝑇))
301, 19, 26mgmhmlin 44047 . . . . . . . . . . . 12 ((𝐺 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
3129, 17, 18, 30syl3anc 1367 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
3224, 28, 313eqtr4d 2866 . . . . . . . . . 10 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = (𝐺‘(𝑥(+g𝑆)𝑦)))
33 fveq2 6664 . . . . . . . . . . . 12 (𝑧 = (𝑥(+g𝑆)𝑦) → (𝐹𝑧) = (𝐹‘(𝑥(+g𝑆)𝑦)))
34 fveq2 6664 . . . . . . . . . . . 12 (𝑧 = (𝑥(+g𝑆)𝑦) → (𝐺𝑧) = (𝐺‘(𝑥(+g𝑆)𝑦)))
3533, 34eqeq12d 2837 . . . . . . . . . . 11 (𝑧 = (𝑥(+g𝑆)𝑦) → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘(𝑥(+g𝑆)𝑦)) = (𝐺‘(𝑥(+g𝑆)𝑦))))
3635elrab 3679 . . . . . . . . . 10 ((𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ((𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑥(+g𝑆)𝑦)) = (𝐺‘(𝑥(+g𝑆)𝑦))))
3721, 32, 36sylanbrc 585 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3837expr 459 . . . . . . . 8 ((((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
3938ralrimiva 3182 . . . . . . 7 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
40 fveq2 6664 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
41 fveq2 6664 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
4240, 41eqeq12d 2837 . . . . . . . 8 (𝑧 = 𝑦 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑦) = (𝐺𝑦)))
4342ralrab 3684 . . . . . . 7 (∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4439, 43sylibr 236 . . . . . 6 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
4544expr 459 . . . . 5 (((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4645ralrimiva 3182 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
47 fveq2 6664 . . . . . 6 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
48 fveq2 6664 . . . . . 6 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
4947, 48eqeq12d 2837 . . . . 5 (𝑧 = 𝑥 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑥) = (𝐺𝑥)))
5049ralrab 3684 . . . 4 (∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑥 ∈ (Base‘𝑆)((𝐹𝑥) = (𝐺𝑥) → ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
5146, 50sylibr 236 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
521, 19issubmgm 44050 . . . 4 (𝑆 ∈ Mgm → ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMgm‘𝑆) ↔ ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆) ∧ ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
5315, 52syl 17 . . 3 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMgm‘𝑆) ↔ ({𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ⊆ (Base‘𝑆) ∧ ∀𝑥 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥(+g𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
5412, 51, 53mpbir2and 711 . 2 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ∈ (SubMgm‘𝑆))
5510, 54eqeltrd 2913 1 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMgm‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  cin 3934  wss 3935  dom cdm 5549   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Mgmcmgm 17844   MgmHom cmgmhm 44038  SubMgmcsubmgm 44039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-mgm 17846  df-mgmhm 44040  df-submgm 44041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator