MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmhmima Structured version   Visualization version   GIF version

Theorem mgmhmima 18741
Description: The homomorphic image of a submagma is a submagma. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
mgmhmima ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹𝑋) ∈ (SubMgm‘𝑁))

Proof of Theorem mgmhmima
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6091 . . 3 (𝐹𝑋) ⊆ ran 𝐹
2 eqid 2735 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2735 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
42, 3mgmhmf 18723 . . . . 5 (𝐹 ∈ (𝑀 MgmHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
54adantr 480 . . . 4 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
65frnd 6745 . . 3 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁))
71, 6sstrid 4007 . 2 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹𝑋) ⊆ (Base‘𝑁))
8 simpll 767 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 ∈ (𝑀 MgmHom 𝑁))
92submgmss 18731 . . . . . . . . . . . 12 (𝑋 ∈ (SubMgm‘𝑀) → 𝑋 ⊆ (Base‘𝑀))
109adantl 481 . . . . . . . . . . 11 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝑋 ⊆ (Base‘𝑀))
1110adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑋 ⊆ (Base‘𝑀))
12 simprl 771 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧𝑋)
1311, 12sseldd 3996 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑧 ∈ (Base‘𝑀))
14 simprr 773 . . . . . . . . . 10 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥𝑋)
1511, 14sseldd 3996 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝑥 ∈ (Base‘𝑀))
16 eqid 2735 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
17 eqid 2735 . . . . . . . . . 10 (+g𝑁) = (+g𝑁)
182, 16, 17mgmhmlin 18725 . . . . . . . . 9 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
198, 13, 15, 18syl3anc 1370 . . . . . . . 8 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
205ffnd 6738 . . . . . . . . . 10 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝐹 Fn (Base‘𝑀))
2120adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 Fn (Base‘𝑀))
2216submgmcl 18733 . . . . . . . . . . 11 ((𝑋 ∈ (SubMgm‘𝑀) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
23223expb 1119 . . . . . . . . . 10 ((𝑋 ∈ (SubMgm‘𝑀) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
2423adantll 714 . . . . . . . . 9 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
25 fnfvima 7253 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧(+g𝑀)𝑥) ∈ 𝑋) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
2621, 11, 24, 25syl3anc 1370 . . . . . . . 8 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) ∈ (𝐹𝑋))
2719, 26eqeltrrd 2840 . . . . . . 7 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧𝑋𝑥𝑋)) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
2827anassrs 467 . . . . . 6 ((((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧𝑋) ∧ 𝑥𝑋) → ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
2928ralrimiva 3144 . . . . 5 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧𝑋) → ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋))
30 oveq2 7439 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹𝑧)(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
3130eleq1d 2824 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3231ralima 7257 . . . . . . 7 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3320, 10, 32syl2anc 584 . . . . . 6 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3433adantr 480 . . . . 5 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧𝑋) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧)(+g𝑁)(𝐹𝑥)) ∈ (𝐹𝑋)))
3529, 34mpbird 257 . . . 4 (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧𝑋) → ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
3635ralrimiva 3144 . . 3 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋))
37 oveq1 7438 . . . . . . 7 (𝑥 = (𝐹𝑧) → (𝑥(+g𝑁)𝑦) = ((𝐹𝑧)(+g𝑁)𝑦))
3837eleq1d 2824 . . . . . 6 (𝑥 = (𝐹𝑧) → ((𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
3938ralbidv 3176 . . . . 5 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4039ralima 7257 . . . 4 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4120, 10, 40syl2anc 584 . . 3 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧)(+g𝑁)𝑦) ∈ (𝐹𝑋)))
4236, 41mpbird 257 . 2 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))
43 mgmhmrcl 18720 . . . . 5 (𝐹 ∈ (𝑀 MgmHom 𝑁) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm))
4443simprd 495 . . . 4 (𝐹 ∈ (𝑀 MgmHom 𝑁) → 𝑁 ∈ Mgm)
4544adantr 480 . . 3 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝑁 ∈ Mgm)
463, 17issubmgm 18728 . . 3 (𝑁 ∈ Mgm → ((𝐹𝑋) ∈ (SubMgm‘𝑁) ↔ ((𝐹𝑋) ⊆ (Base‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))))
4745, 46syl 17 . 2 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ((𝐹𝑋) ∈ (SubMgm‘𝑁) ↔ ((𝐹𝑋) ⊆ (Base‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))))
487, 42, 47mpbir2and 713 1 ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹𝑋) ∈ (SubMgm‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Mgmcmgm 18664   MgmHom cmgmhm 18716  SubMgmcsubmgm 18717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mgm 18666  df-mgmhm 18718  df-submgm 18719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator