Step | Hyp | Ref
| Expression |
1 | | imassrn 5969 |
. . 3
⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) |
3 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑁) =
(Base‘𝑁) |
4 | 2, 3 | mgmhmf 45226 |
. . . . 5
⊢ (𝐹 ∈ (𝑀 MgmHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
5 | 4 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
6 | 5 | frnd 6592 |
. . 3
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁)) |
7 | 1, 6 | sstrid 3928 |
. 2
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹 “ 𝑋) ⊆ (Base‘𝑁)) |
8 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 ∈ (𝑀 MgmHom 𝑁)) |
9 | 2 | submgmss 45234 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (SubMgm‘𝑀) → 𝑋 ⊆ (Base‘𝑀)) |
10 | 9 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝑋 ⊆ (Base‘𝑀)) |
11 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑀)) |
12 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
13 | 11, 12 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ (Base‘𝑀)) |
14 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
15 | 11, 14 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑀)) |
16 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑀) = (+g‘𝑀) |
17 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑁) = (+g‘𝑁) |
18 | 2, 16, 17 | mgmhmlin 45228 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
19 | 8, 13, 15, 18 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
20 | 5 | ffnd 6585 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝐹 Fn (Base‘𝑀)) |
21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 Fn (Base‘𝑀)) |
22 | 16 | submgmcl 45236 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ (SubMgm‘𝑀) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
23 | 22 | 3expb 1118 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ (SubMgm‘𝑀) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
24 | 23 | adantll 710 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
25 | | fnfvima 7091 |
. . . . . . . . 9
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) ∈ (𝐹 “ 𝑋)) |
26 | 21, 11, 24, 25 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) ∈ (𝐹 “ 𝑋)) |
27 | 19, 26 | eqeltrrd 2840 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
28 | 27 | anassrs 467 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
29 | 28 | ralrimiva 3107 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
30 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑧)(+g‘𝑁)𝑦) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
31 | 30 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → (((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
32 | 31 | ralima 7096 |
. . . . . . 7
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
33 | 20, 10, 32 | syl2anc 583 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
34 | 33 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧 ∈ 𝑋) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
35 | 29, 34 | mpbird 256 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) ∧ 𝑧 ∈ 𝑋) → ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
36 | 35 | ralrimiva 3107 |
. . 3
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
37 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥(+g‘𝑁)𝑦) = ((𝐹‘𝑧)(+g‘𝑁)𝑦)) |
38 | 37 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) |
39 | 38 | ralbidv 3120 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑧) → (∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) |
40 | 39 | ralima 7096 |
. . . 4
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) |
41 | 20, 10, 40 | syl2anc 583 |
. . 3
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧)(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋))) |
42 | 36, 41 | mpbird 256 |
. 2
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
43 | | mgmhmrcl 45223 |
. . . . 5
⊢ (𝐹 ∈ (𝑀 MgmHom 𝑁) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm)) |
44 | 43 | simprd 495 |
. . . 4
⊢ (𝐹 ∈ (𝑀 MgmHom 𝑁) → 𝑁 ∈ Mgm) |
45 | 44 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → 𝑁 ∈ Mgm) |
46 | 3, 17 | issubmgm 45231 |
. . 3
⊢ (𝑁 ∈ Mgm → ((𝐹 “ 𝑋) ∈ (SubMgm‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
47 | 45, 46 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → ((𝐹 “ 𝑋) ∈ (SubMgm‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
48 | 7, 42, 47 | mpbir2and 709 |
1
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMgm‘𝑁)) |