| Step | Hyp | Ref
| Expression |
| 1 | | mgmhmrcl 18707 |
. . . 4
⊢ (𝐹 ∈ (𝑇 MgmHom 𝑈) → (𝑇 ∈ Mgm ∧ 𝑈 ∈ Mgm)) |
| 2 | 1 | simprd 495 |
. . 3
⊢ (𝐹 ∈ (𝑇 MgmHom 𝑈) → 𝑈 ∈ Mgm) |
| 3 | | mgmhmrcl 18707 |
. . . 4
⊢ (𝐺 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| 4 | 3 | simpld 494 |
. . 3
⊢ (𝐺 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm) |
| 5 | 2, 4 | anim12ci 614 |
. 2
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm)) |
| 6 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 7 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 8 | 6, 7 | mgmhmf 18710 |
. . . 4
⊢ (𝐹 ∈ (𝑇 MgmHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈)) |
| 9 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 10 | 9, 6 | mgmhmf 18710 |
. . . 4
⊢ (𝐺 ∈ (𝑆 MgmHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
| 11 | | fco 6760 |
. . . 4
⊢ ((𝐹:(Base‘𝑇)⟶(Base‘𝑈) ∧ 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) → (𝐹 ∘ 𝐺):(Base‘𝑆)⟶(Base‘𝑈)) |
| 12 | 8, 10, 11 | syl2an 596 |
. . 3
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹 ∘ 𝐺):(Base‘𝑆)⟶(Base‘𝑈)) |
| 13 | | eqid 2737 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 14 | | eqid 2737 |
. . . . . . . . . 10
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 15 | 9, 13, 14 | mgmhmlin 18712 |
. . . . . . . . 9
⊢ ((𝐺 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g‘𝑆)𝑦)) = ((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦))) |
| 16 | 15 | 3expb 1121 |
. . . . . . . 8
⊢ ((𝐺 ∈ (𝑆 MgmHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g‘𝑆)𝑦)) = ((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦))) |
| 17 | 16 | adantll 714 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g‘𝑆)𝑦)) = ((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦))) |
| 18 | 17 | fveq2d 6910 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g‘𝑆)𝑦))) = (𝐹‘((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦)))) |
| 19 | | simpll 767 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐹 ∈ (𝑇 MgmHom 𝑈)) |
| 20 | 10 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
| 21 | | simprl 771 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) |
| 22 | 20, 21 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘𝑥) ∈ (Base‘𝑇)) |
| 23 | | simprr 773 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) |
| 24 | 20, 23 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘𝑦) ∈ (Base‘𝑇)) |
| 25 | | eqid 2737 |
. . . . . . . 8
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 26 | 6, 14, 25 | mgmhmlin 18712 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ (𝐺‘𝑥) ∈ (Base‘𝑇) ∧ (𝐺‘𝑦) ∈ (Base‘𝑇)) → (𝐹‘((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦))) = ((𝐹‘(𝐺‘𝑥))(+g‘𝑈)(𝐹‘(𝐺‘𝑦)))) |
| 27 | 19, 22, 24, 26 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘((𝐺‘𝑥)(+g‘𝑇)(𝐺‘𝑦))) = ((𝐹‘(𝐺‘𝑥))(+g‘𝑈)(𝐹‘(𝐺‘𝑦)))) |
| 28 | 18, 27 | eqtrd 2777 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g‘𝑆)𝑦))) = ((𝐹‘(𝐺‘𝑥))(+g‘𝑈)(𝐹‘(𝐺‘𝑦)))) |
| 29 | 4 | adantl 481 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm) |
| 30 | 9, 13 | mgmcl 18656 |
. . . . . . . 8
⊢ ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 31 | 30 | 3expb 1121 |
. . . . . . 7
⊢ ((𝑆 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 32 | 29, 31 | sylan 580 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
| 33 | | fvco3 7008 |
. . . . . 6
⊢ ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) → ((𝐹 ∘ 𝐺)‘(𝑥(+g‘𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g‘𝑆)𝑦)))) |
| 34 | 20, 32, 33 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹 ∘ 𝐺)‘(𝑥(+g‘𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g‘𝑆)𝑦)))) |
| 35 | | fvco3 7008 |
. . . . . . 7
⊢ ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 36 | 20, 21, 35 | syl2anc 584 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 37 | | fvco3 7008 |
. . . . . . 7
⊢ ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
| 38 | 20, 23, 37 | syl2anc 584 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
| 39 | 36, 38 | oveq12d 7449 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (((𝐹 ∘ 𝐺)‘𝑥)(+g‘𝑈)((𝐹 ∘ 𝐺)‘𝑦)) = ((𝐹‘(𝐺‘𝑥))(+g‘𝑈)(𝐹‘(𝐺‘𝑦)))) |
| 40 | 28, 34, 39 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹 ∘ 𝐺)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥)(+g‘𝑈)((𝐹 ∘ 𝐺)‘𝑦))) |
| 41 | 40 | ralrimivva 3202 |
. . 3
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹 ∘ 𝐺)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥)(+g‘𝑈)((𝐹 ∘ 𝐺)‘𝑦))) |
| 42 | 12, 41 | jca 511 |
. 2
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ((𝐹 ∘ 𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹 ∘ 𝐺)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥)(+g‘𝑈)((𝐹 ∘ 𝐺)‘𝑦)))) |
| 43 | 9, 7, 13, 25 | ismgmhm 18709 |
. 2
⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 MgmHom 𝑈) ↔ ((𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm) ∧ ((𝐹 ∘ 𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹 ∘ 𝐺)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥)(+g‘𝑈)((𝐹 ∘ 𝐺)‘𝑦))))) |
| 44 | 5, 42, 43 | sylanbrc 583 |
1
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MgmHom 𝑈)) |