| Step | Hyp | Ref
| Expression |
| 1 | | mgmhmrcl 18707 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| 2 | 1 | simpld 494 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm) |
| 3 | 2 | adantl 481 |
. . . 4
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm) |
| 4 | | resmgmhm2.u |
. . . . . 6
⊢ 𝑈 = (𝑇 ↾s 𝑋) |
| 5 | 4 | submgmmgm 18721 |
. . . . 5
⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑈 ∈ Mgm) |
| 6 | 5 | ad2antrr 726 |
. . . 4
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑈 ∈ Mgm) |
| 7 | 3, 6 | jca 511 |
. . 3
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm)) |
| 8 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 9 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 10 | 8, 9 | mgmhmf 18710 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 11 | 10 | adantl 481 |
. . . . . . 7
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 12 | 11 | ffnd 6737 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 Fn (Base‘𝑆)) |
| 13 | | simplr 769 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → ran 𝐹 ⊆ 𝑋) |
| 14 | | df-f 6565 |
. . . . . 6
⊢ (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹 ⊆ 𝑋)) |
| 15 | 12, 13, 14 | sylanbrc 583 |
. . . . 5
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋) |
| 16 | 4 | submgmbas 18722 |
. . . . . . 7
⊢ (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈)) |
| 17 | 16 | ad2antrr 726 |
. . . . . 6
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑋 = (Base‘𝑈)) |
| 18 | 17 | feq3d 6723 |
. . . . 5
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋 ↔ 𝐹:(Base‘𝑆)⟶(Base‘𝑈))) |
| 19 | 15, 18 | mpbid 232 |
. . . 4
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈)) |
| 20 | | eqid 2737 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 21 | | eqid 2737 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 22 | 8, 20, 21 | mgmhmlin 18712 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 23 | 22 | 3expb 1121 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 24 | 23 | adantll 714 |
. . . . . 6
⊢ ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 25 | 4, 21 | ressplusg 17334 |
. . . . . . . 8
⊢ (𝑋 ∈ (SubMgm‘𝑇) →
(+g‘𝑇) =
(+g‘𝑈)) |
| 26 | 25 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g‘𝑇) = (+g‘𝑈)) |
| 27 | 26 | oveqd 7448 |
. . . . . 6
⊢ ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 28 | 24, 27 | eqtrd 2777 |
. . . . 5
⊢ ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 29 | 28 | ralrimivva 3202 |
. . . 4
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))) |
| 30 | 19, 29 | jca 511 |
. . 3
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)))) |
| 31 | | eqid 2737 |
. . . 4
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 32 | | eqid 2737 |
. . . 4
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 33 | 8, 31, 20, 32 | ismgmhm 18709 |
. . 3
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑈) ↔ ((𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))))) |
| 34 | 7, 30, 33 | sylanbrc 583 |
. 2
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑈)) |
| 35 | 4 | resmgmhm2 18725 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
| 36 | 35 | ancoms 458 |
. . 3
⊢ ((𝑋 ∈ (SubMgm‘𝑇) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑈)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
| 37 | 36 | adantlr 715 |
. 2
⊢ (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑈)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) |
| 38 | 34, 37 | impbida 801 |
1
⊢ ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈))) |