MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmgmhm2b Structured version   Visualization version   GIF version

Theorem resmgmhm2b 18621
Description: Restriction of the codomain of a homomorphism. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
resmgmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmgmhm2b ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈)))

Proof of Theorem resmgmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 18602 . . . . . 6 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
21simpld 494 . . . . 5 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm)
32adantl 481 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm)
4 resmgmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
54submgmmgm 18616 . . . . 5 (𝑋 ∈ (SubMgm‘𝑇) → 𝑈 ∈ Mgm)
65ad2antrr 726 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑈 ∈ Mgm)
73, 6jca 511 . . 3 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm))
8 eqid 2731 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2731 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
108, 9mgmhmf 18605 . . . . . . . 8 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1110adantl 481 . . . . . . 7 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1211ffnd 6652 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
13 simplr 768 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → ran 𝐹𝑋)
14 df-f 6485 . . . . . 6 (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹𝑋))
1512, 13, 14sylanbrc 583 . . . . 5 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋)
164submgmbas 18617 . . . . . . 7 (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈))
1716ad2antrr 726 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑋 = (Base‘𝑈))
1817feq3d 6636 . . . . 5 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋𝐹:(Base‘𝑆)⟶(Base‘𝑈)))
1915, 18mpbid 232 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
20 eqid 2731 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
21 eqid 2731 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
228, 20, 21mgmhmlin 18607 . . . . . . . 8 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
23223expb 1120 . . . . . . 7 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2423adantll 714 . . . . . 6 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
254, 21ressplusg 17195 . . . . . . . 8 (𝑋 ∈ (SubMgm‘𝑇) → (+g𝑇) = (+g𝑈))
2625ad3antrrr 730 . . . . . . 7 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2726oveqd 7363 . . . . . 6 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2824, 27eqtrd 2766 . . . . 5 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2928ralrimivva 3175 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
3019, 29jca 511 . . 3 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦))))
31 eqid 2731 . . . 4 (Base‘𝑈) = (Base‘𝑈)
32 eqid 2731 . . . 4 (+g𝑈) = (+g𝑈)
338, 31, 20, 32ismgmhm 18604 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑈) ↔ ((𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))))
347, 30, 33sylanbrc 583 . 2 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑈))
354resmgmhm2 18620 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3635ancoms 458 . . 3 ((𝑋 ∈ (SubMgm‘𝑇) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑈)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3736adantlr 715 . 2 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑈)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3834, 37impbida 800 1 ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  +gcplusg 17161  Mgmcmgm 18546   MgmHom cmgmhm 18598  SubMgmcsubmgm 18599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mgm 18548  df-mgmhm 18600  df-submgm 18601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator