MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmgmhm2b Structured version   Visualization version   GIF version

Theorem resmgmhm2b 18670
Description: Restriction of the codomain of a homomorphism. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
resmgmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmgmhm2b ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈)))

Proof of Theorem resmgmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 18651 . . . . . 6 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
21simpld 493 . . . . 5 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm)
32adantl 480 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm)
4 resmgmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
54submgmmgm 18665 . . . . 5 (𝑋 ∈ (SubMgm‘𝑇) → 𝑈 ∈ Mgm)
65ad2antrr 724 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑈 ∈ Mgm)
73, 6jca 510 . . 3 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm))
8 eqid 2725 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2725 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
108, 9mgmhmf 18654 . . . . . . . 8 (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1110adantl 480 . . . . . . 7 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1211ffnd 6717 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
13 simplr 767 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → ran 𝐹𝑋)
14 df-f 6546 . . . . . 6 (𝐹:(Base‘𝑆)⟶𝑋 ↔ (𝐹 Fn (Base‘𝑆) ∧ ran 𝐹𝑋))
1512, 13, 14sylanbrc 581 . . . . 5 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶𝑋)
164submgmbas 18666 . . . . . . 7 (𝑋 ∈ (SubMgm‘𝑇) → 𝑋 = (Base‘𝑈))
1716ad2antrr 724 . . . . . 6 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝑋 = (Base‘𝑈))
1817feq3d 6703 . . . . 5 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝐹:(Base‘𝑆)⟶𝑋𝐹:(Base‘𝑆)⟶(Base‘𝑈)))
1915, 18mpbid 231 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
20 eqid 2725 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
21 eqid 2725 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
228, 20, 21mgmhmlin 18656 . . . . . . . 8 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
23223expb 1117 . . . . . . 7 ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2423adantll 712 . . . . . 6 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
254, 21ressplusg 17268 . . . . . . . 8 (𝑋 ∈ (SubMgm‘𝑇) → (+g𝑇) = (+g𝑈))
2625ad3antrrr 728 . . . . . . 7 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2726oveqd 7432 . . . . . 6 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2824, 27eqtrd 2765 . . . . 5 ((((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2928ralrimivva 3191 . . . 4 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
3019, 29jca 510 . . 3 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦))))
31 eqid 2725 . . . 4 (Base‘𝑈) = (Base‘𝑈)
32 eqid 2725 . . . 4 (+g𝑈) = (+g𝑈)
338, 31, 20, 32ismgmhm 18653 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑈) ↔ ((𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))))
347, 30, 33sylanbrc 581 . 2 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑈))
354resmgmhm2 18669 . . . 4 ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3635ancoms 457 . . 3 ((𝑋 ∈ (SubMgm‘𝑇) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑈)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3736adantlr 713 . 2 (((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑈)) → 𝐹 ∈ (𝑆 MgmHom 𝑇))
3834, 37impbida 799 1 ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  wss 3940  ran crn 5673   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7415  Basecbs 17177  s cress 17206  +gcplusg 17230  Mgmcmgm 18595   MgmHom cmgmhm 18647  SubMgmcsubmgm 18648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mgm 18597  df-mgmhm 18649  df-submgm 18650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator