Step | Hyp | Ref
| Expression |
1 | | mgmhmrcl 45223 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm)) |
2 | 1 | ancomd 461 |
. . . 4
⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm)) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm)) |
4 | | f1ocnv 6712 |
. . . . . 6
⊢ (𝐹:𝐵–1-1-onto→𝐶 → ◡𝐹:𝐶–1-1-onto→𝐵) |
5 | 4 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹:𝐶–1-1-onto→𝐵) |
6 | | f1of 6700 |
. . . . 5
⊢ (◡𝐹:𝐶–1-1-onto→𝐵 → ◡𝐹:𝐶⟶𝐵) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹:𝐶⟶𝐵) |
8 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
9 | 7 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ◡𝐹:𝐶⟶𝐵) |
10 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ 𝐶) |
11 | 9, 10 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (◡𝐹‘𝑥) ∈ 𝐵) |
12 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑦 ∈ 𝐶) |
13 | 9, 12 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (◡𝐹‘𝑦) ∈ 𝐵) |
14 | | mgmhmf1o.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
15 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑅) = (+g‘𝑅) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
17 | 14, 15, 16 | mgmhmlin 45228 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ (◡𝐹‘𝑥) ∈ 𝐵 ∧ (◡𝐹‘𝑦) ∈ 𝐵) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑆)(𝐹‘(◡𝐹‘𝑦)))) |
18 | 8, 11, 13, 17 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑆)(𝐹‘(◡𝐹‘𝑦)))) |
19 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐹:𝐵–1-1-onto→𝐶) |
20 | | f1ocnvfv2 7130 |
. . . . . . . . 9
⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝑥 ∈ 𝐶) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
21 | 19, 10, 20 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
22 | | f1ocnvfv2 7130 |
. . . . . . . . 9
⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ 𝑦 ∈ 𝐶) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) |
23 | 19, 12, 22 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘(◡𝐹‘𝑦)) = 𝑦) |
24 | 21, 23 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘(◡𝐹‘𝑥))(+g‘𝑆)(𝐹‘(◡𝐹‘𝑦))) = (𝑥(+g‘𝑆)𝑦)) |
25 | 18, 24 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑆)𝑦)) |
26 | 1 | simpld 494 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) → 𝑅 ∈ Mgm) |
27 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝑅 ∈ Mgm) |
28 | 27 | adantr 480 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑅 ∈ Mgm) |
29 | 14, 15 | mgmcl 18244 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mgm ∧ (◡𝐹‘𝑥) ∈ 𝐵 ∧ (◡𝐹‘𝑦) ∈ 𝐵) → ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)) ∈ 𝐵) |
30 | 28, 11, 13, 29 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)) ∈ 𝐵) |
31 | | f1ocnvfv 7131 |
. . . . . . 7
⊢ ((𝐹:𝐵–1-1-onto→𝐶 ∧ ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)) ∈ 𝐵) → ((𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑆)𝑦) → (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)))) |
32 | 19, 30, 31 | syl2anc 583 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) = (𝑥(+g‘𝑆)𝑦) → (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)))) |
33 | 25, 32 | mpd 15 |
. . . . 5
⊢ (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) |
34 | 33 | ralrimivva 3114 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))) |
35 | 7, 34 | jca 511 |
. . 3
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹:𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦)))) |
36 | | mgmhmf1o.c |
. . . 4
⊢ 𝐶 = (Base‘𝑆) |
37 | 36, 14, 16, 15 | ismgmhm 45225 |
. . 3
⊢ (◡𝐹 ∈ (𝑆 MgmHom 𝑅) ↔ ((𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm) ∧ (◡𝐹:𝐶⟶𝐵 ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (◡𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((◡𝐹‘𝑥)(+g‘𝑅)(◡𝐹‘𝑦))))) |
38 | 3, 35, 37 | sylanbrc 582 |
. 2
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 MgmHom 𝑅)) |
39 | 14, 36 | mgmhmf 45226 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) → 𝐹:𝐵⟶𝐶) |
40 | 39 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹:𝐵⟶𝐶) |
41 | 40 | ffnd 6585 |
. . 3
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹 Fn 𝐵) |
42 | 36, 14 | mgmhmf 45226 |
. . . . 5
⊢ (◡𝐹 ∈ (𝑆 MgmHom 𝑅) → ◡𝐹:𝐶⟶𝐵) |
43 | 42 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MgmHom 𝑅)) → ◡𝐹:𝐶⟶𝐵) |
44 | 43 | ffnd 6585 |
. . 3
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MgmHom 𝑅)) → ◡𝐹 Fn 𝐶) |
45 | | dff1o4 6708 |
. . 3
⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ◡𝐹 Fn 𝐶)) |
46 | 41, 44, 45 | sylanbrc 582 |
. 2
⊢ ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹:𝐵–1-1-onto→𝐶) |
47 | 38, 46 | impbida 797 |
1
⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 MgmHom 𝑅))) |