MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmhmf1o Structured version   Visualization version   GIF version

Theorem mgmhmf1o 18608
Description: A magma homomorphism is bijective iff its converse is also a magma homomorphism. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmf1o.b 𝐵 = (Base‘𝑅)
mgmhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
mgmhmf1o (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MgmHom 𝑅)))

Proof of Theorem mgmhmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 18602 . . . . 5 (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm))
21ancomd 461 . . . 4 (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm))
32adantr 480 . . 3 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm))
4 f1ocnv 6775 . . . . . 6 (𝐹:𝐵1-1-onto𝐶𝐹:𝐶1-1-onto𝐵)
54adantl 481 . . . . 5 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶1-1-onto𝐵)
6 f1of 6763 . . . . 5 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
75, 6syl 17 . . . 4 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶𝐵)
8 simpll 766 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ (𝑅 MgmHom 𝑆))
97adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐶𝐵)
10 simprl 770 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
119, 10ffvelcdmd 7018 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑥) ∈ 𝐵)
12 simprr 772 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
139, 12ffvelcdmd 7018 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑦) ∈ 𝐵)
14 mgmhmf1o.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
15 eqid 2731 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
16 eqid 2731 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1714, 15, 16mgmhmlin 18607 . . . . . . . 8 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
188, 11, 13, 17syl3anc 1373 . . . . . . 7 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
19 simplr 768 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐵1-1-onto𝐶)
20 f1ocnvfv2 7211 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑥𝐶) → (𝐹‘(𝐹𝑥)) = 𝑥)
2119, 10, 20syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑥)) = 𝑥)
22 f1ocnvfv2 7211 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑦𝐶) → (𝐹‘(𝐹𝑦)) = 𝑦)
2319, 12, 22syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2421, 23oveq12d 7364 . . . . . . 7 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
2518, 24eqtrd 2766 . . . . . 6 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
261simpld 494 . . . . . . . . . 10 (𝐹 ∈ (𝑅 MgmHom 𝑆) → 𝑅 ∈ Mgm)
2726adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝑅 ∈ Mgm)
2827adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mgm)
2914, 15mgmcl 18551 . . . . . . . 8 ((𝑅 ∈ Mgm ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
3028, 11, 13, 29syl3anc 1373 . . . . . . 7 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
31 f1ocnvfv 7212 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶 ∧ ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3219, 30, 31syl2anc 584 . . . . . 6 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3325, 32mpd 15 . . . . 5 (((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3433ralrimivva 3175 . . . 4 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
357, 34jca 511 . . 3 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
36 mgmhmf1o.c . . . 4 𝐶 = (Base‘𝑆)
3736, 14, 16, 15ismgmhm 18604 . . 3 (𝐹 ∈ (𝑆 MgmHom 𝑅) ↔ ((𝑆 ∈ Mgm ∧ 𝑅 ∈ Mgm) ∧ (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))))
383, 35, 37sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 MgmHom 𝑅))
3914, 36mgmhmf 18605 . . . . 5 (𝐹 ∈ (𝑅 MgmHom 𝑆) → 𝐹:𝐵𝐶)
4039adantr 480 . . . 4 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹:𝐵𝐶)
4140ffnd 6652 . . 3 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹 Fn 𝐵)
4236, 14mgmhmf 18605 . . . . 5 (𝐹 ∈ (𝑆 MgmHom 𝑅) → 𝐹:𝐶𝐵)
4342adantl 481 . . . 4 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹:𝐶𝐵)
4443ffnd 6652 . . 3 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹 Fn 𝐶)
45 dff1o4 6771 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4641, 44, 45sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 MgmHom 𝑆) ∧ 𝐹 ∈ (𝑆 MgmHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4738, 46impbida 800 1 (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MgmHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ccnv 5613   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Mgmcmgm 18546   MgmHom cmgmhm 18598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-mgm 18548  df-mgmhm 18600
This theorem is referenced by:  rnghmf1o  20370
  Copyright terms: Public domain W3C validator