| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgmlrid | Structured version Visualization version GIF version | ||
| Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ismgmid.b | ⊢ 𝐵 = (Base‘𝐺) |
| ismgmid.o | ⊢ 0 = (0g‘𝐺) |
| ismgmid.p | ⊢ + = (+g‘𝐺) |
| mgmidcl.e | ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| Ref | Expression |
|---|---|
| mgmlrid | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ 0 = 0 | |
| 2 | ismgmid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | ismgmid.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | ismgmid.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 5 | mgmidcl.e | . . . . 5 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) | |
| 6 | 2, 3, 4, 5 | ismgmid 18592 | . . . 4 ⊢ (𝜑 → (( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) ↔ 0 = 0 )) |
| 7 | 1, 6 | mpbiri 258 | . . 3 ⊢ (𝜑 → ( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) |
| 8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 9 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 + 𝑥) = ( 0 + 𝑋)) | |
| 10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 11 | 9, 10 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = 𝑋 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 𝑋) = 𝑋)) |
| 12 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 + 0 ) = (𝑋 + 0 )) | |
| 13 | 12, 10 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 + 0 ) = 𝑥 ↔ (𝑋 + 0 ) = 𝑋)) |
| 14 | 11, 13 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ↔ (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))) |
| 15 | 14 | rspccva 3587 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 16 | 8, 15 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 |
| This theorem is referenced by: mndlrid 18680 |
| Copyright terms: Public domain | W3C validator |