| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgmlrid | Structured version Visualization version GIF version | ||
| Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ismgmid.b | ⊢ 𝐵 = (Base‘𝐺) |
| ismgmid.o | ⊢ 0 = (0g‘𝐺) |
| ismgmid.p | ⊢ + = (+g‘𝐺) |
| mgmidcl.e | ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| Ref | Expression |
|---|---|
| mgmlrid | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ 0 = 0 | |
| 2 | ismgmid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | ismgmid.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | ismgmid.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 5 | mgmidcl.e | . . . . 5 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) | |
| 6 | 2, 3, 4, 5 | ismgmid 18598 | . . . 4 ⊢ (𝜑 → (( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) ↔ 0 = 0 )) |
| 7 | 1, 6 | mpbiri 258 | . . 3 ⊢ (𝜑 → ( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) |
| 8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 9 | oveq2 7397 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 + 𝑥) = ( 0 + 𝑋)) | |
| 10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 11 | 9, 10 | eqeq12d 2746 | . . . 4 ⊢ (𝑥 = 𝑋 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 𝑋) = 𝑋)) |
| 12 | oveq1 7396 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 + 0 ) = (𝑋 + 0 )) | |
| 13 | 12, 10 | eqeq12d 2746 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 + 0 ) = 𝑥 ↔ (𝑋 + 0 ) = 𝑋)) |
| 14 | 11, 13 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ↔ (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))) |
| 15 | 14 | rspccva 3590 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 16 | 8, 15 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 0gc0g 17408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-riota 7346 df-ov 7392 df-0g 17410 |
| This theorem is referenced by: mndlrid 18686 |
| Copyright terms: Public domain | W3C validator |