MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmlrid Structured version   Visualization version   GIF version

Theorem mgmlrid 18702
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
mgmidcl.e (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
Assertion
Ref Expression
mgmlrid ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
Distinct variable groups:   𝑥,𝑒, +   0 ,𝑒,𝑥   𝐵,𝑒,𝑥   𝑒,𝐺,𝑥   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑒)   𝑋(𝑒)

Proof of Theorem mgmlrid
StepHypRef Expression
1 eqid 2737 . . . 4 0 = 0
2 ismgmid.b . . . . 5 𝐵 = (Base‘𝐺)
3 ismgmid.o . . . . 5 0 = (0g𝐺)
4 ismgmid.p . . . . 5 + = (+g𝐺)
5 mgmidcl.e . . . . 5 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
62, 3, 4, 5ismgmid 18700 . . . 4 (𝜑 → (( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) ↔ 0 = 0 ))
71, 6mpbiri 258 . . 3 (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
87simprd 495 . 2 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
9 oveq2 7446 . . . . 5 (𝑥 = 𝑋 → ( 0 + 𝑥) = ( 0 + 𝑋))
10 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
119, 10eqeq12d 2753 . . . 4 (𝑥 = 𝑋 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 𝑋) = 𝑋))
12 oveq1 7445 . . . . 5 (𝑥 = 𝑋 → (𝑥 + 0 ) = (𝑋 + 0 ))
1312, 10eqeq12d 2753 . . . 4 (𝑥 = 𝑋 → ((𝑥 + 0 ) = 𝑥 ↔ (𝑋 + 0 ) = 𝑋))
1411, 13anbi12d 632 . . 3 (𝑥 = 𝑋 → ((( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ↔ (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)))
1514rspccva 3624 . 2 ((∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
168, 15sylan 580 1 ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3061  wrex 3070  cfv 6569  (class class class)co 7438  Basecbs 17254  +gcplusg 17307  0gc0g 17495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-riota 7395  df-ov 7441  df-0g 17497
This theorem is referenced by:  mndlrid  18788
  Copyright terms: Public domain W3C validator