MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmlrid Structured version   Visualization version   GIF version

Theorem mgmlrid 18595
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
mgmidcl.e (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
Assertion
Ref Expression
mgmlrid ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
Distinct variable groups:   𝑥,𝑒, +   0 ,𝑒,𝑥   𝐵,𝑒,𝑥   𝑒,𝐺,𝑥   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑒)   𝑋(𝑒)

Proof of Theorem mgmlrid
StepHypRef Expression
1 eqid 2731 . . . 4 0 = 0
2 ismgmid.b . . . . 5 𝐵 = (Base‘𝐺)
3 ismgmid.o . . . . 5 0 = (0g𝐺)
4 ismgmid.p . . . . 5 + = (+g𝐺)
5 mgmidcl.e . . . . 5 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
62, 3, 4, 5ismgmid 18593 . . . 4 (𝜑 → (( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) ↔ 0 = 0 ))
71, 6mpbiri 258 . . 3 (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
87simprd 495 . 2 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
9 oveq2 7420 . . . . 5 (𝑥 = 𝑋 → ( 0 + 𝑥) = ( 0 + 𝑋))
10 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
119, 10eqeq12d 2747 . . . 4 (𝑥 = 𝑋 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 𝑋) = 𝑋))
12 oveq1 7419 . . . . 5 (𝑥 = 𝑋 → (𝑥 + 0 ) = (𝑋 + 0 ))
1312, 10eqeq12d 2747 . . . 4 (𝑥 = 𝑋 → ((𝑥 + 0 ) = 𝑥 ↔ (𝑋 + 0 ) = 𝑋))
1411, 13anbi12d 630 . . 3 (𝑥 = 𝑋 → ((( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ↔ (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)))
1514rspccva 3611 . 2 ((∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
168, 15sylan 579 1 ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  0gc0g 17392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-riota 7368  df-ov 7415  df-0g 17394
This theorem is referenced by:  mndlrid  18681
  Copyright terms: Public domain W3C validator