MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmf1o Structured version   Visualization version   GIF version

Theorem mhmf1o 18612
Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
mhmf1o.b 𝐵 = (Base‘𝑅)
mhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
mhmf1o (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))

Proof of Theorem mhmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 18606 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd)
2 mhmrcl1 18605 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd)
31, 2jca 512 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd))
43adantr 481 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd))
5 f1ocnv 6796 . . . . . 6 (𝐹:𝐵1-1-onto𝐶𝐹:𝐶1-1-onto𝐵)
65adantl 482 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶1-1-onto𝐵)
7 f1of 6784 . . . . 5 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
86, 7syl 17 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶𝐵)
9 simpll 765 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ (𝑅 MndHom 𝑆))
108adantr 481 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐶𝐵)
11 simprl 769 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
1210, 11ffvelcdmd 7036 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑥) ∈ 𝐵)
13 simprr 771 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
1410, 13ffvelcdmd 7036 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑦) ∈ 𝐵)
15 mhmf1o.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
16 eqid 2736 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
17 eqid 2736 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1815, 16, 17mhmlin 18609 . . . . . . . 8 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
20 simpr 485 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
2120adantr 481 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐵1-1-onto𝐶)
22 f1ocnvfv2 7223 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑥𝐶) → (𝐹‘(𝐹𝑥)) = 𝑥)
2321, 11, 22syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑥)) = 𝑥)
24 f1ocnvfv2 7223 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑦𝐶) → (𝐹‘(𝐹𝑦)) = 𝑦)
2521, 13, 24syl2anc 584 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2623, 25oveq12d 7375 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
2719, 26eqtrd 2776 . . . . . 6 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
282adantr 481 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝑅 ∈ Mnd)
2928adantr 481 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mnd)
3015, 16mndcl 18564 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
3129, 12, 14, 30syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
32 f1ocnvfv 7224 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶 ∧ ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3321, 31, 32syl2anc 584 . . . . . 6 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3427, 33mpd 15 . . . . 5 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3534ralrimivva 3197 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
36 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
37 eqid 2736 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3836, 37mhm0 18610 . . . . . . . 8 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
3938adantr 481 . . . . . . 7 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑅)) = (0g𝑆))
4039eqcomd 2742 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (0g𝑆) = (𝐹‘(0g𝑅)))
4140fveq2d 6846 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑆)) = (𝐹‘(𝐹‘(0g𝑅))))
4215, 36mndidcl 18571 . . . . . . . 8 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
432, 42syl 17 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → (0g𝑅) ∈ 𝐵)
4443adantr 481 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (0g𝑅) ∈ 𝐵)
45 f1ocnvfv1 7222 . . . . . 6 ((𝐹:𝐵1-1-onto𝐶 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(𝐹‘(0g𝑅))) = (0g𝑅))
4620, 44, 45syl2anc 584 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(𝐹‘(0g𝑅))) = (0g𝑅))
4741, 46eqtrd 2776 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑆)) = (0g𝑅))
488, 35, 473jca 1128 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑅)))
49 mhmf1o.c . . . 4 𝐶 = (Base‘𝑆)
5049, 15, 17, 16, 37, 36ismhm 18603 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑅) ↔ ((𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑅))))
514, 48, 50sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 MndHom 𝑅))
5215, 49mhmf 18607 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:𝐵𝐶)
5352adantr 481 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵𝐶)
5453ffnd 6669 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐵)
5549, 15mhmf 18607 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑅) → 𝐹:𝐶𝐵)
5655adantl 482 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐶𝐵)
5756ffnd 6669 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐶)
58 dff1o4 6792 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
5954, 57, 58sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
6051, 59impbida 799 1 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  ccnv 5632   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  0gc0g 17321  Mndcmnd 18556   MndHom cmhm 18599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601
This theorem is referenced by:  rhmf1o  20164
  Copyright terms: Public domain W3C validator