MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmf1o Structured version   Visualization version   GIF version

Theorem mhmf1o 18744
Description: A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
Hypotheses
Ref Expression
mhmf1o.b 𝐵 = (Base‘𝑅)
mhmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
mhmf1o (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))

Proof of Theorem mhmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 18736 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd)
2 mhmrcl1 18735 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd)
31, 2jca 511 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd))
43adantr 480 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd))
5 f1ocnv 6845 . . . . . 6 (𝐹:𝐵1-1-onto𝐶𝐹:𝐶1-1-onto𝐵)
65adantl 481 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶1-1-onto𝐵)
7 f1of 6833 . . . . 5 (𝐹:𝐶1-1-onto𝐵𝐹:𝐶𝐵)
86, 7syl 17 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐶𝐵)
9 simpll 766 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ (𝑅 MndHom 𝑆))
108adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐶𝐵)
11 simprl 770 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
1210, 11ffvelcdmd 7089 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑥) ∈ 𝐵)
13 simprr 772 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
1410, 13ffvelcdmd 7089 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹𝑦) ∈ 𝐵)
15 mhmf1o.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
16 eqid 2727 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
17 eqid 2727 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
1815, 16, 17mhmlin 18741 . . . . . . . 8 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1369 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))))
20 simpr 484 . . . . . . . . . 10 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
2120adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐵1-1-onto𝐶)
22 f1ocnvfv2 7280 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑥𝐶) → (𝐹‘(𝐹𝑥)) = 𝑥)
2321, 11, 22syl2anc 583 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑥)) = 𝑥)
24 f1ocnvfv2 7280 . . . . . . . . 9 ((𝐹:𝐵1-1-onto𝐶𝑦𝐶) → (𝐹‘(𝐹𝑦)) = 𝑦)
2521, 13, 24syl2anc 583 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2623, 25oveq12d 7432 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘(𝐹𝑥))(+g𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
2719, 26eqtrd 2767 . . . . . 6 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦))
282adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝑅 ∈ Mnd)
2928adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mnd)
3015, 16mndcl 18693 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
3129, 12, 14, 30syl3anc 1369 . . . . . . 7 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵)
32 f1ocnvfv 7281 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶 ∧ ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3321, 31, 32syl2anc 583 . . . . . 6 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹‘((𝐹𝑥)(+g𝑅)(𝐹𝑦))) = (𝑥(+g𝑆)𝑦) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦))))
3427, 33mpd 15 . . . . 5 (((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ∧ (𝑥𝐶𝑦𝐶)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
3534ralrimivva 3195 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)))
36 eqid 2727 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
37 eqid 2727 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
3836, 37mhm0 18742 . . . . . . . 8 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
3938adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑅)) = (0g𝑆))
4039eqcomd 2733 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (0g𝑆) = (𝐹‘(0g𝑅)))
4140fveq2d 6895 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑆)) = (𝐹‘(𝐹‘(0g𝑅))))
4215, 36mndidcl 18700 . . . . . . . 8 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
432, 42syl 17 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → (0g𝑅) ∈ 𝐵)
4443adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (0g𝑅) ∈ 𝐵)
45 f1ocnvfv1 7279 . . . . . 6 ((𝐹:𝐵1-1-onto𝐶 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(𝐹‘(0g𝑅))) = (0g𝑅))
4620, 44, 45syl2anc 583 . . . . 5 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(𝐹‘(0g𝑅))) = (0g𝑅))
4741, 46eqtrd 2767 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹‘(0g𝑆)) = (0g𝑅))
488, 35, 473jca 1126 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑅)))
49 mhmf1o.c . . . 4 𝐶 = (Base‘𝑆)
5049, 15, 17, 16, 37, 36ismhm 18733 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑅) ↔ ((𝑆 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ (𝐹:𝐶𝐵 ∧ ∀𝑥𝐶𝑦𝐶 (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑅)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑅))))
514, 48, 50sylanbrc 582 . 2 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 MndHom 𝑅))
5215, 49mhmf 18737 . . . . 5 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:𝐵𝐶)
5352adantr 480 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵𝐶)
5453ffnd 6717 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐵)
5549, 15mhmf 18737 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑅) → 𝐹:𝐶𝐵)
5655adantl 481 . . . 4 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐶𝐵)
5756ffnd 6717 . . 3 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹 Fn 𝐶)
58 dff1o4 6841 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
5954, 57, 58sylanbrc 582 . 2 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ 𝐹 ∈ (𝑆 MndHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
6051, 59impbida 800 1 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  ccnv 5671   Fn wfn 6537  wf 6538  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414  Basecbs 17171  +gcplusg 17224  0gc0g 17412  Mndcmnd 18685   MndHom cmhm 18729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8838  df-0g 17414  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731
This theorem is referenced by:  rhmf1o  20419
  Copyright terms: Public domain W3C validator