MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2mhm Structured version   Visualization version   GIF version

Theorem pwsco2mhm 18760
Description: Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2mhm.y 𝑌 = (𝑅s 𝐴)
pwsco2mhm.z 𝑍 = (𝑆s 𝐴)
pwsco2mhm.b 𝐵 = (Base‘𝑌)
pwsco2mhm.a (𝜑𝐴𝑉)
pwsco2mhm.f (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
Assertion
Ref Expression
pwsco2mhm (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝑌   𝑔,𝑍   𝜑,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝑉(𝑔)

Proof of Theorem pwsco2mhm
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2mhm.f . . . 4 (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
2 mhmrcl1 18714 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Mnd)
4 pwsco2mhm.a . . 3 (𝜑𝐴𝑉)
5 pwsco2mhm.y . . . 4 𝑌 = (𝑅s 𝐴)
65pwsmnd 18699 . . 3 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → 𝑌 ∈ Mnd)
73, 4, 6syl2anc 584 . 2 (𝜑𝑌 ∈ Mnd)
8 mhmrcl2 18715 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd)
91, 8syl 17 . . 3 (𝜑𝑆 ∈ Mnd)
10 pwsco2mhm.z . . . 4 𝑍 = (𝑆s 𝐴)
1110pwsmnd 18699 . . 3 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → 𝑍 ∈ Mnd)
129, 4, 11syl2anc 584 . 2 (𝜑𝑍 ∈ Mnd)
13 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2729 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1513, 14mhmf 18716 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
161, 15syl 17 . . . . . 6 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
17 pwsco2mhm.b . . . . . . 7 𝐵 = (Base‘𝑌)
183adantr 480 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑅 ∈ Mnd)
194adantr 480 . . . . . . 7 ((𝜑𝑔𝐵) → 𝐴𝑉)
20 simpr 484 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑔𝐵)
215, 13, 17, 18, 19, 20pwselbas 17452 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔:𝐴⟶(Base‘𝑅))
22 fco 6712 . . . . . 6 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑔:𝐴⟶(Base‘𝑅)) → (𝐹𝑔):𝐴⟶(Base‘𝑆))
2316, 21, 22syl2an2r 685 . . . . 5 ((𝜑𝑔𝐵) → (𝐹𝑔):𝐴⟶(Base‘𝑆))
24 eqid 2729 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
2510, 14, 24pwselbasb 17451 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑔) ∈ (Base‘𝑍) ↔ (𝐹𝑔):𝐴⟶(Base‘𝑆)))
269, 19, 25syl2an2r 685 . . . . 5 ((𝜑𝑔𝐵) → ((𝐹𝑔) ∈ (Base‘𝑍) ↔ (𝐹𝑔):𝐴⟶(Base‘𝑆)))
2723, 26mpbird 257 . . . 4 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ (Base‘𝑍))
2827fmpttd 7087 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍))
291adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 ∈ (𝑅 MndHom 𝑆))
3029adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → 𝐹 ∈ (𝑅 MndHom 𝑆))
3129, 2syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Mnd)
324adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐴𝑉)
33 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
345, 13, 17, 31, 32, 33pwselbas 17452 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐴⟶(Base‘𝑅))
3534ffvelcdmda 7056 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ (Base‘𝑅))
36 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
375, 13, 17, 31, 32, 36pwselbas 17452 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐴⟶(Base‘𝑅))
3837ffvelcdmda 7056 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑦𝑤) ∈ (Base‘𝑅))
39 eqid 2729 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
40 eqid 2729 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
4113, 39, 40mhmlin 18720 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥𝑤) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤))))
4230, 35, 38, 41syl3anc 1373 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤))))
4342mpteq2dva 5200 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))) = (𝑤𝐴 ↦ ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤)))))
44 fvexd 6873 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘(𝑥𝑤)) ∈ V)
45 fvexd 6873 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘(𝑦𝑤)) ∈ V)
4634feqmptd 6929 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 = (𝑤𝐴 ↦ (𝑥𝑤)))
4729, 15syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4847feqmptd 6929 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 = (𝑧 ∈ (Base‘𝑅) ↦ (𝐹𝑧)))
49 fveq2 6858 . . . . . . . . 9 (𝑧 = (𝑥𝑤) → (𝐹𝑧) = (𝐹‘(𝑥𝑤)))
5035, 46, 48, 49fmptco 7101 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) = (𝑤𝐴 ↦ (𝐹‘(𝑥𝑤))))
5137feqmptd 6929 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 = (𝑤𝐴 ↦ (𝑦𝑤)))
52 fveq2 6858 . . . . . . . . 9 (𝑧 = (𝑦𝑤) → (𝐹𝑧) = (𝐹‘(𝑦𝑤)))
5338, 51, 48, 52fmptco 7101 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) = (𝑤𝐴 ↦ (𝐹‘(𝑦𝑤))))
5432, 44, 45, 50, 53offval2 7673 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)) = (𝑤𝐴 ↦ ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤)))))
5543, 54eqtr4d 2767 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))) = ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)))
5631adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → 𝑅 ∈ Mnd)
5713, 39mndcl 18669 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑥𝑤) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
5856, 35, 38, 57syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
59 eqid 2729 . . . . . . . . 9 (+g𝑌) = (+g𝑌)
605, 17, 31, 32, 33, 36, 39, 59pwsplusgval 17453 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) = (𝑥f (+g𝑅)𝑦))
61 fvexd 6873 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ V)
62 fvexd 6873 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑦𝑤) ∈ V)
6332, 61, 62, 46, 51offval2 7673 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥f (+g𝑅)𝑦) = (𝑤𝐴 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6460, 63eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) = (𝑤𝐴 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
65 fveq2 6858 . . . . . . 7 (𝑧 = ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) → (𝐹𝑧) = (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6658, 64, 48, 65fmptco 7101 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) = (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))))
6729, 8syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Mnd)
68 fco 6712 . . . . . . . . 9 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑥:𝐴⟶(Base‘𝑅)) → (𝐹𝑥):𝐴⟶(Base‘𝑆))
6947, 34, 68syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥):𝐴⟶(Base‘𝑆))
7010, 14, 24pwselbasb 17451 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑥) ∈ (Base‘𝑍) ↔ (𝐹𝑥):𝐴⟶(Base‘𝑆)))
7167, 32, 70syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) ∈ (Base‘𝑍) ↔ (𝐹𝑥):𝐴⟶(Base‘𝑆)))
7269, 71mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ (Base‘𝑍))
73 fco 6712 . . . . . . . . 9 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑦:𝐴⟶(Base‘𝑅)) → (𝐹𝑦):𝐴⟶(Base‘𝑆))
7447, 37, 73syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦):𝐴⟶(Base‘𝑆))
7510, 14, 24pwselbasb 17451 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑦) ∈ (Base‘𝑍) ↔ (𝐹𝑦):𝐴⟶(Base‘𝑆)))
7667, 32, 75syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑦) ∈ (Base‘𝑍) ↔ (𝐹𝑦):𝐴⟶(Base‘𝑆)))
7774, 76mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ (Base‘𝑍))
78 eqid 2729 . . . . . . 7 (+g𝑍) = (+g𝑍)
7910, 24, 67, 32, 72, 77, 40, 78pwsplusgval 17453 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g𝑍)(𝐹𝑦)) = ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)))
8055, 66, 793eqtr4d 2774 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) = ((𝐹𝑥)(+g𝑍)(𝐹𝑦)))
81 eqid 2729 . . . . . 6 (𝑔𝐵 ↦ (𝐹𝑔)) = (𝑔𝐵 ↦ (𝐹𝑔))
82 coeq2 5822 . . . . . 6 (𝑔 = (𝑥(+g𝑌)𝑦) → (𝐹𝑔) = (𝐹 ∘ (𝑥(+g𝑌)𝑦)))
8317, 59mndcl 18669 . . . . . . . 8 ((𝑌 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
84833expb 1120 . . . . . . 7 ((𝑌 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
857, 84sylan 580 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
86 coexg 7905 . . . . . . 7 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥(+g𝑌)𝑦) ∈ 𝐵) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) ∈ V)
871, 85, 86syl2an2r 685 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) ∈ V)
8881, 82, 85, 87fvmptd3 6991 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (𝐹 ∘ (𝑥(+g𝑌)𝑦)))
89 coeq2 5822 . . . . . . 7 (𝑔 = 𝑥 → (𝐹𝑔) = (𝐹𝑥))
9081, 89, 33, 72fvmptd3 6991 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥) = (𝐹𝑥))
91 coeq2 5822 . . . . . . 7 (𝑔 = 𝑦 → (𝐹𝑔) = (𝐹𝑦))
9281, 91, 36, 77fvmptd3 6991 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦) = (𝐹𝑦))
9390, 92oveq12d 7405 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) = ((𝐹𝑥)(+g𝑍)(𝐹𝑦)))
9480, 88, 933eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)))
9594ralrimivva 3180 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)))
96 coeq2 5822 . . . . 5 (𝑔 = (0g𝑌) → (𝐹𝑔) = (𝐹 ∘ (0g𝑌)))
97 eqid 2729 . . . . . . 7 (0g𝑌) = (0g𝑌)
9817, 97mndidcl 18676 . . . . . 6 (𝑌 ∈ Mnd → (0g𝑌) ∈ 𝐵)
997, 98syl 17 . . . . 5 (𝜑 → (0g𝑌) ∈ 𝐵)
100 coexg 7905 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (0g𝑌) ∈ 𝐵) → (𝐹 ∘ (0g𝑌)) ∈ V)
1011, 99, 100syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∘ (0g𝑌)) ∈ V)
10281, 96, 99, 101fvmptd3 6991 . . . 4 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (𝐹 ∘ (0g𝑌)))
10316ffnd 6689 . . . . . 6 (𝜑𝐹 Fn (Base‘𝑅))
104 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
10513, 104mndidcl 18676 . . . . . . 7 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
1063, 105syl 17 . . . . . 6 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
107 fcoconst 7106 . . . . . 6 ((𝐹 Fn (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)) → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐴 × {(𝐹‘(0g𝑅))}))
108103, 106, 107syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐴 × {(𝐹‘(0g𝑅))}))
1095, 104pws0g 18700 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑅)}) = (0g𝑌))
1103, 4, 109syl2anc 584 . . . . . 6 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝑌))
111110coeq2d 5826 . . . . 5 (𝜑 → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐹 ∘ (0g𝑌)))
112 eqid 2729 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
113104, 112mhm0 18721 . . . . . . . 8 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
1141, 113syl 17 . . . . . . 7 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
115114sneqd 4601 . . . . . 6 (𝜑 → {(𝐹‘(0g𝑅))} = {(0g𝑆)})
116115xpeq2d 5668 . . . . 5 (𝜑 → (𝐴 × {(𝐹‘(0g𝑅))}) = (𝐴 × {(0g𝑆)}))
117108, 111, 1163eqtr3d 2772 . . . 4 (𝜑 → (𝐹 ∘ (0g𝑌)) = (𝐴 × {(0g𝑆)}))
11810, 112pws0g 18700 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑆)}) = (0g𝑍))
1199, 4, 118syl2anc 584 . . . 4 (𝜑 → (𝐴 × {(0g𝑆)}) = (0g𝑍))
120102, 117, 1193eqtrd 2768 . . 3 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍))
12128, 95, 1203jca 1128 . 2 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) ∧ ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍)))
122 eqid 2729 . . 3 (0g𝑍) = (0g𝑍)
12317, 24, 59, 78, 97, 122ismhm 18712 . 2 ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍) ↔ ((𝑌 ∈ Mnd ∧ 𝑍 ∈ Mnd) ∧ ((𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) ∧ ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍))))
1247, 12, 121, 123syl21anbrc 1345 1 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  Basecbs 17179  +gcplusg 17220  0gc0g 17402  s cpws 17409  Mndcmnd 18661   MndHom cmhm 18708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710
This theorem is referenced by:  pwsco2rhm  20412
  Copyright terms: Public domain W3C validator