Step | Hyp | Ref
| Expression |
1 | | pwsco2mhm.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
2 | | mhmrcl1 18433 |
. . . 4
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Mnd) |
4 | | pwsco2mhm.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
5 | | pwsco2mhm.y |
. . . 4
⊢ 𝑌 = (𝑅 ↑s 𝐴) |
6 | 5 | pwsmnd 18420 |
. . 3
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ Mnd) |
7 | 3, 4, 6 | syl2anc 584 |
. 2
⊢ (𝜑 → 𝑌 ∈ Mnd) |
8 | | mhmrcl2 18434 |
. . . 4
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd) |
9 | 1, 8 | syl 17 |
. . 3
⊢ (𝜑 → 𝑆 ∈ Mnd) |
10 | | pwsco2mhm.z |
. . . 4
⊢ 𝑍 = (𝑆 ↑s 𝐴) |
11 | 10 | pwsmnd 18420 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝑍 ∈ Mnd) |
12 | 9, 4, 11 | syl2anc 584 |
. 2
⊢ (𝜑 → 𝑍 ∈ Mnd) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
14 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑆) =
(Base‘𝑆) |
15 | 13, 14 | mhmf 18435 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
16 | 1, 15 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
17 | | pwsco2mhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
18 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑅 ∈ Mnd) |
19 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝐴 ∈ 𝑉) |
20 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ 𝐵) |
21 | 5, 13, 17, 18, 19, 20 | pwselbas 17200 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → 𝑔:𝐴⟶(Base‘𝑅)) |
22 | | fco 6624 |
. . . . . 6
⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑔:𝐴⟶(Base‘𝑅)) → (𝐹 ∘ 𝑔):𝐴⟶(Base‘𝑆)) |
23 | 16, 21, 22 | syl2an2r 682 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (𝐹 ∘ 𝑔):𝐴⟶(Base‘𝑆)) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑍) =
(Base‘𝑍) |
25 | 10, 14, 24 | pwselbasb 17199 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝐹 ∘ 𝑔) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑔):𝐴⟶(Base‘𝑆))) |
26 | 9, 19, 25 | syl2an2r 682 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → ((𝐹 ∘ 𝑔) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑔):𝐴⟶(Base‘𝑆))) |
27 | 23, 26 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐵) → (𝐹 ∘ 𝑔) ∈ (Base‘𝑍)) |
28 | 27 | fmpttd 6989 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)):𝐵⟶(Base‘𝑍)) |
29 | 1 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
30 | 29 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → 𝐹 ∈ (𝑅 MndHom 𝑆)) |
31 | 29, 2 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Mnd) |
32 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐴 ∈ 𝑉) |
33 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
34 | 5, 13, 17, 31, 32, 33 | pwselbas 17200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥:𝐴⟶(Base‘𝑅)) |
35 | 34 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ (Base‘𝑅)) |
36 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
37 | 5, 13, 17, 31, 32, 36 | pwselbas 17200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦:𝐴⟶(Base‘𝑅)) |
38 | 37 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝑦‘𝑤) ∈ (Base‘𝑅)) |
39 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑅) = (+g‘𝑅) |
40 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
41 | 13, 39, 40 | mhmlin 18437 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥‘𝑤) ∈ (Base‘𝑅) ∧ (𝑦‘𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤))) = ((𝐹‘(𝑥‘𝑤))(+g‘𝑆)(𝐹‘(𝑦‘𝑤)))) |
42 | 30, 35, 38, 41 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤))) = ((𝐹‘(𝑥‘𝑤))(+g‘𝑆)(𝐹‘(𝑦‘𝑤)))) |
43 | 42 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑤 ∈ 𝐴 ↦ (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘(𝑥‘𝑤))(+g‘𝑆)(𝐹‘(𝑦‘𝑤))))) |
44 | | fvexd 6789 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝐹‘(𝑥‘𝑤)) ∈ V) |
45 | | fvexd 6789 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝐹‘(𝑦‘𝑤)) ∈ V) |
46 | 34 | feqmptd 6837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = (𝑤 ∈ 𝐴 ↦ (𝑥‘𝑤))) |
47 | 29, 15 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
48 | 47 | feqmptd 6837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐹 = (𝑧 ∈ (Base‘𝑅) ↦ (𝐹‘𝑧))) |
49 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥‘𝑤) → (𝐹‘𝑧) = (𝐹‘(𝑥‘𝑤))) |
50 | 35, 46, 48, 49 | fmptco 7001 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑥) = (𝑤 ∈ 𝐴 ↦ (𝐹‘(𝑥‘𝑤)))) |
51 | 37 | feqmptd 6837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 = (𝑤 ∈ 𝐴 ↦ (𝑦‘𝑤))) |
52 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑧 = (𝑦‘𝑤) → (𝐹‘𝑧) = (𝐹‘(𝑦‘𝑤))) |
53 | 38, 51, 48, 52 | fmptco 7001 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑦) = (𝑤 ∈ 𝐴 ↦ (𝐹‘(𝑦‘𝑤)))) |
54 | 32, 44, 45, 50, 53 | offval2 7553 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹 ∘ 𝑥) ∘f
(+g‘𝑆)(𝐹 ∘ 𝑦)) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘(𝑥‘𝑤))(+g‘𝑆)(𝐹‘(𝑦‘𝑤))))) |
55 | 43, 54 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑤 ∈ 𝐴 ↦ (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) = ((𝐹 ∘ 𝑥) ∘f
(+g‘𝑆)(𝐹 ∘ 𝑦))) |
56 | 31 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → 𝑅 ∈ Mnd) |
57 | 13, 39 | mndcl 18393 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ (𝑥‘𝑤) ∈ (Base‘𝑅) ∧ (𝑦‘𝑤) ∈ (Base‘𝑅)) → ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)) ∈ (Base‘𝑅)) |
58 | 56, 35, 38, 57 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)) ∈ (Base‘𝑅)) |
59 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑌) = (+g‘𝑌) |
60 | 5, 17, 31, 32, 33, 36, 39, 59 | pwsplusgval 17201 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑌)𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) |
61 | | fvexd 6789 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ V) |
62 | | fvexd 6789 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐴) → (𝑦‘𝑤) ∈ V) |
63 | 32, 61, 62, 46, 51 | offval2 7553 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∘f
(+g‘𝑅)𝑦) = (𝑤 ∈ 𝐴 ↦ ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) |
64 | 60, 63 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑌)𝑦) = (𝑤 ∈ 𝐴 ↦ ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) |
65 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑧 = ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)) → (𝐹‘𝑧) = (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) |
66 | 58, 64, 48, 65 | fmptco 7001 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) = (𝑤 ∈ 𝐴 ↦ (𝐹‘((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤))))) |
67 | 29, 8 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Mnd) |
68 | | fco 6624 |
. . . . . . . . 9
⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑥:𝐴⟶(Base‘𝑅)) → (𝐹 ∘ 𝑥):𝐴⟶(Base‘𝑆)) |
69 | 47, 34, 68 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑥):𝐴⟶(Base‘𝑆)) |
70 | 10, 14, 24 | pwselbasb 17199 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝐹 ∘ 𝑥) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑥):𝐴⟶(Base‘𝑆))) |
71 | 67, 32, 70 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹 ∘ 𝑥) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑥):𝐴⟶(Base‘𝑆))) |
72 | 69, 71 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑥) ∈ (Base‘𝑍)) |
73 | | fco 6624 |
. . . . . . . . 9
⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑦:𝐴⟶(Base‘𝑅)) → (𝐹 ∘ 𝑦):𝐴⟶(Base‘𝑆)) |
74 | 47, 37, 73 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑦):𝐴⟶(Base‘𝑆)) |
75 | 10, 14, 24 | pwselbasb 17199 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝐹 ∘ 𝑦) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑦):𝐴⟶(Base‘𝑆))) |
76 | 67, 32, 75 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹 ∘ 𝑦) ∈ (Base‘𝑍) ↔ (𝐹 ∘ 𝑦):𝐴⟶(Base‘𝑆))) |
77 | 74, 76 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ 𝑦) ∈ (Base‘𝑍)) |
78 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑍) = (+g‘𝑍) |
79 | 10, 24, 67, 32, 72, 77, 40, 78 | pwsplusgval 17201 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹 ∘ 𝑥)(+g‘𝑍)(𝐹 ∘ 𝑦)) = ((𝐹 ∘ 𝑥) ∘f
(+g‘𝑆)(𝐹 ∘ 𝑦))) |
80 | 55, 66, 79 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) = ((𝐹 ∘ 𝑥)(+g‘𝑍)(𝐹 ∘ 𝑦))) |
81 | | eqid 2738 |
. . . . . 6
⊢ (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) |
82 | | coeq2 5767 |
. . . . . 6
⊢ (𝑔 = (𝑥(+g‘𝑌)𝑦) → (𝐹 ∘ 𝑔) = (𝐹 ∘ (𝑥(+g‘𝑌)𝑦))) |
83 | 17, 59 | mndcl 18393 |
. . . . . . . 8
⊢ ((𝑌 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑌)𝑦) ∈ 𝐵) |
84 | 83 | 3expb 1119 |
. . . . . . 7
⊢ ((𝑌 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑌)𝑦) ∈ 𝐵) |
85 | 7, 84 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑌)𝑦) ∈ 𝐵) |
86 | | coexg 7776 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥(+g‘𝑌)𝑦) ∈ 𝐵) → (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) ∈ V) |
87 | 1, 85, 86 | syl2an2r 682 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹 ∘ (𝑥(+g‘𝑌)𝑦)) ∈ V) |
88 | 81, 82, 85, 87 | fvmptd3 6898 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (𝐹 ∘ (𝑥(+g‘𝑌)𝑦))) |
89 | | coeq2 5767 |
. . . . . . 7
⊢ (𝑔 = 𝑥 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝑥)) |
90 | 81, 89, 33, 72 | fvmptd3 6898 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥) = (𝐹 ∘ 𝑥)) |
91 | | coeq2 5767 |
. . . . . . 7
⊢ (𝑔 = 𝑦 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝑦)) |
92 | 81, 91, 36, 77 | fvmptd3 6898 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦) = (𝐹 ∘ 𝑦)) |
93 | 90, 92 | oveq12d 7293 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦)) = ((𝐹 ∘ 𝑥)(+g‘𝑍)(𝐹 ∘ 𝑦))) |
94 | 80, 88, 93 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦))) |
95 | 94 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦))) |
96 | | coeq2 5767 |
. . . . 5
⊢ (𝑔 = (0g‘𝑌) → (𝐹 ∘ 𝑔) = (𝐹 ∘ (0g‘𝑌))) |
97 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑌) = (0g‘𝑌) |
98 | 17, 97 | mndidcl 18400 |
. . . . . 6
⊢ (𝑌 ∈ Mnd →
(0g‘𝑌)
∈ 𝐵) |
99 | 7, 98 | syl 17 |
. . . . 5
⊢ (𝜑 → (0g‘𝑌) ∈ 𝐵) |
100 | | coexg 7776 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (0g‘𝑌) ∈ 𝐵) → (𝐹 ∘ (0g‘𝑌)) ∈ V) |
101 | 1, 99, 100 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ (0g‘𝑌)) ∈ V) |
102 | 81, 96, 99, 101 | fvmptd3 6898 |
. . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (𝐹 ∘ (0g‘𝑌))) |
103 | 16 | ffnd 6601 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn (Base‘𝑅)) |
104 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
105 | 13, 104 | mndidcl 18400 |
. . . . . . 7
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ (Base‘𝑅)) |
106 | 3, 105 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
107 | | fcoconst 7006 |
. . . . . 6
⊢ ((𝐹 Fn (Base‘𝑅) ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ (𝐹 ∘ (𝐴 ×
{(0g‘𝑅)}))
= (𝐴 × {(𝐹‘(0g‘𝑅))})) |
108 | 103, 106,
107 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ (𝐴 × {(0g‘𝑅)})) = (𝐴 × {(𝐹‘(0g‘𝑅))})) |
109 | 5, 104 | pws0g 18421 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐴 × {(0g‘𝑅)}) = (0g‘𝑌)) |
110 | 3, 4, 109 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {(0g‘𝑅)}) = (0g‘𝑌)) |
111 | 110 | coeq2d 5771 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ (𝐴 × {(0g‘𝑅)})) = (𝐹 ∘ (0g‘𝑌))) |
112 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
113 | 104, 112 | mhm0 18438 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
114 | 1, 113 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
115 | 114 | sneqd 4573 |
. . . . . 6
⊢ (𝜑 → {(𝐹‘(0g‘𝑅))} =
{(0g‘𝑆)}) |
116 | 115 | xpeq2d 5619 |
. . . . 5
⊢ (𝜑 → (𝐴 × {(𝐹‘(0g‘𝑅))}) = (𝐴 × {(0g‘𝑆)})) |
117 | 108, 111,
116 | 3eqtr3d 2786 |
. . . 4
⊢ (𝜑 → (𝐹 ∘ (0g‘𝑌)) = (𝐴 × {(0g‘𝑆)})) |
118 | 10, 112 | pws0g 18421 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐴 × {(0g‘𝑆)}) = (0g‘𝑍)) |
119 | 9, 4, 118 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐴 × {(0g‘𝑆)}) = (0g‘𝑍)) |
120 | 102, 117,
119 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (0g‘𝑍)) |
121 | 28, 95, 120 | 3jca 1127 |
. 2
⊢ (𝜑 → ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦)) ∧ ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (0g‘𝑍))) |
122 | | eqid 2738 |
. . 3
⊢
(0g‘𝑍) = (0g‘𝑍) |
123 | 17, 24, 59, 78, 97, 122 | ismhm 18432 |
. 2
⊢ ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 MndHom 𝑍) ↔ ((𝑌 ∈ Mnd ∧ 𝑍 ∈ Mnd) ∧ ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(𝑥(+g‘𝑌)𝑦)) = (((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑥)(+g‘𝑍)((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘𝑦)) ∧ ((𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔))‘(0g‘𝑌)) = (0g‘𝑍)))) |
124 | 7, 12, 121, 123 | syl21anbrc 1343 |
1
⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 MndHom 𝑍)) |