MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2mhm Structured version   Visualization version   GIF version

Theorem pwsco2mhm 18386
Description: Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2mhm.y 𝑌 = (𝑅s 𝐴)
pwsco2mhm.z 𝑍 = (𝑆s 𝐴)
pwsco2mhm.b 𝐵 = (Base‘𝑌)
pwsco2mhm.a (𝜑𝐴𝑉)
pwsco2mhm.f (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
Assertion
Ref Expression
pwsco2mhm (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝑌   𝑔,𝑍   𝜑,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝑉(𝑔)

Proof of Theorem pwsco2mhm
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2mhm.f . . . 4 (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
2 mhmrcl1 18348 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Mnd)
4 pwsco2mhm.a . . 3 (𝜑𝐴𝑉)
5 pwsco2mhm.y . . . 4 𝑌 = (𝑅s 𝐴)
65pwsmnd 18335 . . 3 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → 𝑌 ∈ Mnd)
73, 4, 6syl2anc 583 . 2 (𝜑𝑌 ∈ Mnd)
8 mhmrcl2 18349 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd)
91, 8syl 17 . . 3 (𝜑𝑆 ∈ Mnd)
10 pwsco2mhm.z . . . 4 𝑍 = (𝑆s 𝐴)
1110pwsmnd 18335 . . 3 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → 𝑍 ∈ Mnd)
129, 4, 11syl2anc 583 . 2 (𝜑𝑍 ∈ Mnd)
13 eqid 2738 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2738 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1513, 14mhmf 18350 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
161, 15syl 17 . . . . . 6 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
17 pwsco2mhm.b . . . . . . 7 𝐵 = (Base‘𝑌)
183adantr 480 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑅 ∈ Mnd)
194adantr 480 . . . . . . 7 ((𝜑𝑔𝐵) → 𝐴𝑉)
20 simpr 484 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑔𝐵)
215, 13, 17, 18, 19, 20pwselbas 17117 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔:𝐴⟶(Base‘𝑅))
22 fco 6608 . . . . . 6 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑔:𝐴⟶(Base‘𝑅)) → (𝐹𝑔):𝐴⟶(Base‘𝑆))
2316, 21, 22syl2an2r 681 . . . . 5 ((𝜑𝑔𝐵) → (𝐹𝑔):𝐴⟶(Base‘𝑆))
24 eqid 2738 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
2510, 14, 24pwselbasb 17116 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑔) ∈ (Base‘𝑍) ↔ (𝐹𝑔):𝐴⟶(Base‘𝑆)))
269, 19, 25syl2an2r 681 . . . . 5 ((𝜑𝑔𝐵) → ((𝐹𝑔) ∈ (Base‘𝑍) ↔ (𝐹𝑔):𝐴⟶(Base‘𝑆)))
2723, 26mpbird 256 . . . 4 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ (Base‘𝑍))
2827fmpttd 6971 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍))
291adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 ∈ (𝑅 MndHom 𝑆))
3029adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → 𝐹 ∈ (𝑅 MndHom 𝑆))
3129, 2syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Mnd)
324adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐴𝑉)
33 simprl 767 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
345, 13, 17, 31, 32, 33pwselbas 17117 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐴⟶(Base‘𝑅))
3534ffvelrnda 6943 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ (Base‘𝑅))
36 simprr 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
375, 13, 17, 31, 32, 36pwselbas 17117 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐴⟶(Base‘𝑅))
3837ffvelrnda 6943 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑦𝑤) ∈ (Base‘𝑅))
39 eqid 2738 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
40 eqid 2738 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
4113, 39, 40mhmlin 18352 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥𝑤) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤))))
4230, 35, 38, 41syl3anc 1369 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤))))
4342mpteq2dva 5170 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))) = (𝑤𝐴 ↦ ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤)))))
44 fvexd 6771 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘(𝑥𝑤)) ∈ V)
45 fvexd 6771 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘(𝑦𝑤)) ∈ V)
4634feqmptd 6819 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 = (𝑤𝐴 ↦ (𝑥𝑤)))
4729, 15syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4847feqmptd 6819 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 = (𝑧 ∈ (Base‘𝑅) ↦ (𝐹𝑧)))
49 fveq2 6756 . . . . . . . . 9 (𝑧 = (𝑥𝑤) → (𝐹𝑧) = (𝐹‘(𝑥𝑤)))
5035, 46, 48, 49fmptco 6983 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) = (𝑤𝐴 ↦ (𝐹‘(𝑥𝑤))))
5137feqmptd 6819 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 = (𝑤𝐴 ↦ (𝑦𝑤)))
52 fveq2 6756 . . . . . . . . 9 (𝑧 = (𝑦𝑤) → (𝐹𝑧) = (𝐹‘(𝑦𝑤)))
5338, 51, 48, 52fmptco 6983 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) = (𝑤𝐴 ↦ (𝐹‘(𝑦𝑤))))
5432, 44, 45, 50, 53offval2 7531 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)) = (𝑤𝐴 ↦ ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤)))))
5543, 54eqtr4d 2781 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))) = ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)))
5631adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → 𝑅 ∈ Mnd)
5713, 39mndcl 18308 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑥𝑤) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
5856, 35, 38, 57syl3anc 1369 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
59 eqid 2738 . . . . . . . . 9 (+g𝑌) = (+g𝑌)
605, 17, 31, 32, 33, 36, 39, 59pwsplusgval 17118 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) = (𝑥f (+g𝑅)𝑦))
61 fvexd 6771 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ V)
62 fvexd 6771 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑦𝑤) ∈ V)
6332, 61, 62, 46, 51offval2 7531 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥f (+g𝑅)𝑦) = (𝑤𝐴 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6460, 63eqtrd 2778 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) = (𝑤𝐴 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
65 fveq2 6756 . . . . . . 7 (𝑧 = ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) → (𝐹𝑧) = (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6658, 64, 48, 65fmptco 6983 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) = (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))))
6729, 8syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Mnd)
68 fco 6608 . . . . . . . . 9 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑥:𝐴⟶(Base‘𝑅)) → (𝐹𝑥):𝐴⟶(Base‘𝑆))
6947, 34, 68syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥):𝐴⟶(Base‘𝑆))
7010, 14, 24pwselbasb 17116 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑥) ∈ (Base‘𝑍) ↔ (𝐹𝑥):𝐴⟶(Base‘𝑆)))
7167, 32, 70syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) ∈ (Base‘𝑍) ↔ (𝐹𝑥):𝐴⟶(Base‘𝑆)))
7269, 71mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ (Base‘𝑍))
73 fco 6608 . . . . . . . . 9 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑦:𝐴⟶(Base‘𝑅)) → (𝐹𝑦):𝐴⟶(Base‘𝑆))
7447, 37, 73syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦):𝐴⟶(Base‘𝑆))
7510, 14, 24pwselbasb 17116 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑦) ∈ (Base‘𝑍) ↔ (𝐹𝑦):𝐴⟶(Base‘𝑆)))
7667, 32, 75syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑦) ∈ (Base‘𝑍) ↔ (𝐹𝑦):𝐴⟶(Base‘𝑆)))
7774, 76mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ (Base‘𝑍))
78 eqid 2738 . . . . . . 7 (+g𝑍) = (+g𝑍)
7910, 24, 67, 32, 72, 77, 40, 78pwsplusgval 17118 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g𝑍)(𝐹𝑦)) = ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)))
8055, 66, 793eqtr4d 2788 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) = ((𝐹𝑥)(+g𝑍)(𝐹𝑦)))
81 eqid 2738 . . . . . 6 (𝑔𝐵 ↦ (𝐹𝑔)) = (𝑔𝐵 ↦ (𝐹𝑔))
82 coeq2 5756 . . . . . 6 (𝑔 = (𝑥(+g𝑌)𝑦) → (𝐹𝑔) = (𝐹 ∘ (𝑥(+g𝑌)𝑦)))
8317, 59mndcl 18308 . . . . . . . 8 ((𝑌 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
84833expb 1118 . . . . . . 7 ((𝑌 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
857, 84sylan 579 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
86 coexg 7750 . . . . . . 7 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥(+g𝑌)𝑦) ∈ 𝐵) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) ∈ V)
871, 85, 86syl2an2r 681 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) ∈ V)
8881, 82, 85, 87fvmptd3 6880 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (𝐹 ∘ (𝑥(+g𝑌)𝑦)))
89 coeq2 5756 . . . . . . 7 (𝑔 = 𝑥 → (𝐹𝑔) = (𝐹𝑥))
9081, 89, 33, 72fvmptd3 6880 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥) = (𝐹𝑥))
91 coeq2 5756 . . . . . . 7 (𝑔 = 𝑦 → (𝐹𝑔) = (𝐹𝑦))
9281, 91, 36, 77fvmptd3 6880 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦) = (𝐹𝑦))
9390, 92oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) = ((𝐹𝑥)(+g𝑍)(𝐹𝑦)))
9480, 88, 933eqtr4d 2788 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)))
9594ralrimivva 3114 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)))
96 coeq2 5756 . . . . 5 (𝑔 = (0g𝑌) → (𝐹𝑔) = (𝐹 ∘ (0g𝑌)))
97 eqid 2738 . . . . . . 7 (0g𝑌) = (0g𝑌)
9817, 97mndidcl 18315 . . . . . 6 (𝑌 ∈ Mnd → (0g𝑌) ∈ 𝐵)
997, 98syl 17 . . . . 5 (𝜑 → (0g𝑌) ∈ 𝐵)
100 coexg 7750 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (0g𝑌) ∈ 𝐵) → (𝐹 ∘ (0g𝑌)) ∈ V)
1011, 99, 100syl2anc 583 . . . . 5 (𝜑 → (𝐹 ∘ (0g𝑌)) ∈ V)
10281, 96, 99, 101fvmptd3 6880 . . . 4 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (𝐹 ∘ (0g𝑌)))
10316ffnd 6585 . . . . . 6 (𝜑𝐹 Fn (Base‘𝑅))
104 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
10513, 104mndidcl 18315 . . . . . . 7 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
1063, 105syl 17 . . . . . 6 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
107 fcoconst 6988 . . . . . 6 ((𝐹 Fn (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)) → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐴 × {(𝐹‘(0g𝑅))}))
108103, 106, 107syl2anc 583 . . . . 5 (𝜑 → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐴 × {(𝐹‘(0g𝑅))}))
1095, 104pws0g 18336 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑅)}) = (0g𝑌))
1103, 4, 109syl2anc 583 . . . . . 6 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝑌))
111110coeq2d 5760 . . . . 5 (𝜑 → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐹 ∘ (0g𝑌)))
112 eqid 2738 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
113104, 112mhm0 18353 . . . . . . . 8 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
1141, 113syl 17 . . . . . . 7 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
115114sneqd 4570 . . . . . 6 (𝜑 → {(𝐹‘(0g𝑅))} = {(0g𝑆)})
116115xpeq2d 5610 . . . . 5 (𝜑 → (𝐴 × {(𝐹‘(0g𝑅))}) = (𝐴 × {(0g𝑆)}))
117108, 111, 1163eqtr3d 2786 . . . 4 (𝜑 → (𝐹 ∘ (0g𝑌)) = (𝐴 × {(0g𝑆)}))
11810, 112pws0g 18336 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑆)}) = (0g𝑍))
1199, 4, 118syl2anc 583 . . . 4 (𝜑 → (𝐴 × {(0g𝑆)}) = (0g𝑍))
120102, 117, 1193eqtrd 2782 . . 3 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍))
12128, 95, 1203jca 1126 . 2 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) ∧ ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍)))
122 eqid 2738 . . 3 (0g𝑍) = (0g𝑍)
12317, 24, 59, 78, 97, 122ismhm 18347 . 2 ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍) ↔ ((𝑌 ∈ Mnd ∧ 𝑍 ∈ Mnd) ∧ ((𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) ∧ ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍))))
1247, 12, 121, 123syl21anbrc 1342 1 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  Basecbs 16840  +gcplusg 16888  0gc0g 17067  s cpws 17074  Mndcmnd 18300   MndHom cmhm 18343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345
This theorem is referenced by:  pwsco2rhm  19898
  Copyright terms: Public domain W3C validator