MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2mhm Structured version   Visualization version   GIF version

Theorem pwsco2mhm 18793
Description: Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2mhm.y 𝑌 = (𝑅s 𝐴)
pwsco2mhm.z 𝑍 = (𝑆s 𝐴)
pwsco2mhm.b 𝐵 = (Base‘𝑌)
pwsco2mhm.a (𝜑𝐴𝑉)
pwsco2mhm.f (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
Assertion
Ref Expression
pwsco2mhm (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐹   𝑔,𝑌   𝑔,𝑍   𝜑,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝑉(𝑔)

Proof of Theorem pwsco2mhm
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2mhm.f . . . 4 (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
2 mhmrcl1 18747 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑅 ∈ Mnd)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Mnd)
4 pwsco2mhm.a . . 3 (𝜑𝐴𝑉)
5 pwsco2mhm.y . . . 4 𝑌 = (𝑅s 𝐴)
65pwsmnd 18732 . . 3 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → 𝑌 ∈ Mnd)
73, 4, 6syl2anc 582 . 2 (𝜑𝑌 ∈ Mnd)
8 mhmrcl2 18748 . . . 4 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝑆 ∈ Mnd)
91, 8syl 17 . . 3 (𝜑𝑆 ∈ Mnd)
10 pwsco2mhm.z . . . 4 𝑍 = (𝑆s 𝐴)
1110pwsmnd 18732 . . 3 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → 𝑍 ∈ Mnd)
129, 4, 11syl2anc 582 . 2 (𝜑𝑍 ∈ Mnd)
13 eqid 2725 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2725 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1513, 14mhmf 18749 . . . . . . 7 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
161, 15syl 17 . . . . . 6 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
17 pwsco2mhm.b . . . . . . 7 𝐵 = (Base‘𝑌)
183adantr 479 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑅 ∈ Mnd)
194adantr 479 . . . . . . 7 ((𝜑𝑔𝐵) → 𝐴𝑉)
20 simpr 483 . . . . . . 7 ((𝜑𝑔𝐵) → 𝑔𝐵)
215, 13, 17, 18, 19, 20pwselbas 17474 . . . . . 6 ((𝜑𝑔𝐵) → 𝑔:𝐴⟶(Base‘𝑅))
22 fco 6747 . . . . . 6 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑔:𝐴⟶(Base‘𝑅)) → (𝐹𝑔):𝐴⟶(Base‘𝑆))
2316, 21, 22syl2an2r 683 . . . . 5 ((𝜑𝑔𝐵) → (𝐹𝑔):𝐴⟶(Base‘𝑆))
24 eqid 2725 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
2510, 14, 24pwselbasb 17473 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑔) ∈ (Base‘𝑍) ↔ (𝐹𝑔):𝐴⟶(Base‘𝑆)))
269, 19, 25syl2an2r 683 . . . . 5 ((𝜑𝑔𝐵) → ((𝐹𝑔) ∈ (Base‘𝑍) ↔ (𝐹𝑔):𝐴⟶(Base‘𝑆)))
2723, 26mpbird 256 . . . 4 ((𝜑𝑔𝐵) → (𝐹𝑔) ∈ (Base‘𝑍))
2827fmpttd 7124 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍))
291adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 ∈ (𝑅 MndHom 𝑆))
3029adantr 479 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → 𝐹 ∈ (𝑅 MndHom 𝑆))
3129, 2syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Mnd)
324adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐴𝑉)
33 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
345, 13, 17, 31, 32, 33pwselbas 17474 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥:𝐴⟶(Base‘𝑅))
3534ffvelcdmda 7093 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ (Base‘𝑅))
36 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
375, 13, 17, 31, 32, 36pwselbas 17474 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦:𝐴⟶(Base‘𝑅))
3837ffvelcdmda 7093 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑦𝑤) ∈ (Base‘𝑅))
39 eqid 2725 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
40 eqid 2725 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
4113, 39, 40mhmlin 18753 . . . . . . . . 9 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥𝑤) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤))))
4230, 35, 38, 41syl3anc 1368 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))) = ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤))))
4342mpteq2dva 5249 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))) = (𝑤𝐴 ↦ ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤)))))
44 fvexd 6911 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘(𝑥𝑤)) ∈ V)
45 fvexd 6911 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝐹‘(𝑦𝑤)) ∈ V)
4634feqmptd 6966 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 = (𝑤𝐴 ↦ (𝑥𝑤)))
4729, 15syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
4847feqmptd 6966 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐹 = (𝑧 ∈ (Base‘𝑅) ↦ (𝐹𝑧)))
49 fveq2 6896 . . . . . . . . 9 (𝑧 = (𝑥𝑤) → (𝐹𝑧) = (𝐹‘(𝑥𝑤)))
5035, 46, 48, 49fmptco 7138 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) = (𝑤𝐴 ↦ (𝐹‘(𝑥𝑤))))
5137feqmptd 6966 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 = (𝑤𝐴 ↦ (𝑦𝑤)))
52 fveq2 6896 . . . . . . . . 9 (𝑧 = (𝑦𝑤) → (𝐹𝑧) = (𝐹‘(𝑦𝑤)))
5338, 51, 48, 52fmptco 7138 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) = (𝑤𝐴 ↦ (𝐹‘(𝑦𝑤))))
5432, 44, 45, 50, 53offval2 7705 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)) = (𝑤𝐴 ↦ ((𝐹‘(𝑥𝑤))(+g𝑆)(𝐹‘(𝑦𝑤)))))
5543, 54eqtr4d 2768 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))) = ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)))
5631adantr 479 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → 𝑅 ∈ Mnd)
5713, 39mndcl 18705 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑥𝑤) ∈ (Base‘𝑅) ∧ (𝑦𝑤) ∈ (Base‘𝑅)) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
5856, 35, 38, 57syl3anc 1368 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) ∈ (Base‘𝑅))
59 eqid 2725 . . . . . . . . 9 (+g𝑌) = (+g𝑌)
605, 17, 31, 32, 33, 36, 39, 59pwsplusgval 17475 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) = (𝑥f (+g𝑅)𝑦))
61 fvexd 6911 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ V)
62 fvexd 6911 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑤𝐴) → (𝑦𝑤) ∈ V)
6332, 61, 62, 46, 51offval2 7705 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥f (+g𝑅)𝑦) = (𝑤𝐴 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6460, 63eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) = (𝑤𝐴 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
65 fveq2 6896 . . . . . . 7 (𝑧 = ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) → (𝐹𝑧) = (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6658, 64, 48, 65fmptco 7138 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) = (𝑤𝐴 ↦ (𝐹‘((𝑥𝑤)(+g𝑅)(𝑦𝑤)))))
6729, 8syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑆 ∈ Mnd)
68 fco 6747 . . . . . . . . 9 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑥:𝐴⟶(Base‘𝑅)) → (𝐹𝑥):𝐴⟶(Base‘𝑆))
6947, 34, 68syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥):𝐴⟶(Base‘𝑆))
7010, 14, 24pwselbasb 17473 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑥) ∈ (Base‘𝑍) ↔ (𝐹𝑥):𝐴⟶(Base‘𝑆)))
7167, 32, 70syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥) ∈ (Base‘𝑍) ↔ (𝐹𝑥):𝐴⟶(Base‘𝑆)))
7269, 71mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑥) ∈ (Base‘𝑍))
73 fco 6747 . . . . . . . . 9 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ 𝑦:𝐴⟶(Base‘𝑅)) → (𝐹𝑦):𝐴⟶(Base‘𝑆))
7447, 37, 73syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦):𝐴⟶(Base‘𝑆))
7510, 14, 24pwselbasb 17473 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → ((𝐹𝑦) ∈ (Base‘𝑍) ↔ (𝐹𝑦):𝐴⟶(Base‘𝑆)))
7667, 32, 75syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑦) ∈ (Base‘𝑍) ↔ (𝐹𝑦):𝐴⟶(Base‘𝑆)))
7774, 76mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹𝑦) ∈ (Base‘𝑍))
78 eqid 2725 . . . . . . 7 (+g𝑍) = (+g𝑍)
7910, 24, 67, 32, 72, 77, 40, 78pwsplusgval 17475 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g𝑍)(𝐹𝑦)) = ((𝐹𝑥) ∘f (+g𝑆)(𝐹𝑦)))
8055, 66, 793eqtr4d 2775 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) = ((𝐹𝑥)(+g𝑍)(𝐹𝑦)))
81 eqid 2725 . . . . . 6 (𝑔𝐵 ↦ (𝐹𝑔)) = (𝑔𝐵 ↦ (𝐹𝑔))
82 coeq2 5861 . . . . . 6 (𝑔 = (𝑥(+g𝑌)𝑦) → (𝐹𝑔) = (𝐹 ∘ (𝑥(+g𝑌)𝑦)))
8317, 59mndcl 18705 . . . . . . . 8 ((𝑌 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
84833expb 1117 . . . . . . 7 ((𝑌 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
857, 84sylan 578 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑌)𝑦) ∈ 𝐵)
86 coexg 7937 . . . . . . 7 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (𝑥(+g𝑌)𝑦) ∈ 𝐵) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) ∈ V)
871, 85, 86syl2an2r 683 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹 ∘ (𝑥(+g𝑌)𝑦)) ∈ V)
8881, 82, 85, 87fvmptd3 7027 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (𝐹 ∘ (𝑥(+g𝑌)𝑦)))
89 coeq2 5861 . . . . . . 7 (𝑔 = 𝑥 → (𝐹𝑔) = (𝐹𝑥))
9081, 89, 33, 72fvmptd3 7027 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥) = (𝐹𝑥))
91 coeq2 5861 . . . . . . 7 (𝑔 = 𝑦 → (𝐹𝑔) = (𝐹𝑦))
9281, 91, 36, 77fvmptd3 7027 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦) = (𝐹𝑦))
9390, 92oveq12d 7437 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) = ((𝐹𝑥)(+g𝑍)(𝐹𝑦)))
9480, 88, 933eqtr4d 2775 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)))
9594ralrimivva 3190 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)))
96 coeq2 5861 . . . . 5 (𝑔 = (0g𝑌) → (𝐹𝑔) = (𝐹 ∘ (0g𝑌)))
97 eqid 2725 . . . . . . 7 (0g𝑌) = (0g𝑌)
9817, 97mndidcl 18712 . . . . . 6 (𝑌 ∈ Mnd → (0g𝑌) ∈ 𝐵)
997, 98syl 17 . . . . 5 (𝜑 → (0g𝑌) ∈ 𝐵)
100 coexg 7937 . . . . . 6 ((𝐹 ∈ (𝑅 MndHom 𝑆) ∧ (0g𝑌) ∈ 𝐵) → (𝐹 ∘ (0g𝑌)) ∈ V)
1011, 99, 100syl2anc 582 . . . . 5 (𝜑 → (𝐹 ∘ (0g𝑌)) ∈ V)
10281, 96, 99, 101fvmptd3 7027 . . . 4 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (𝐹 ∘ (0g𝑌)))
10316ffnd 6724 . . . . . 6 (𝜑𝐹 Fn (Base‘𝑅))
104 eqid 2725 . . . . . . . 8 (0g𝑅) = (0g𝑅)
10513, 104mndidcl 18712 . . . . . . 7 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
1063, 105syl 17 . . . . . 6 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
107 fcoconst 7143 . . . . . 6 ((𝐹 Fn (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)) → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐴 × {(𝐹‘(0g𝑅))}))
108103, 106, 107syl2anc 582 . . . . 5 (𝜑 → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐴 × {(𝐹‘(0g𝑅))}))
1095, 104pws0g 18733 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑅)}) = (0g𝑌))
1103, 4, 109syl2anc 582 . . . . . 6 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝑌))
111110coeq2d 5865 . . . . 5 (𝜑 → (𝐹 ∘ (𝐴 × {(0g𝑅)})) = (𝐹 ∘ (0g𝑌)))
112 eqid 2725 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
113104, 112mhm0 18754 . . . . . . . 8 (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
1141, 113syl 17 . . . . . . 7 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
115114sneqd 4642 . . . . . 6 (𝜑 → {(𝐹‘(0g𝑅))} = {(0g𝑆)})
116115xpeq2d 5708 . . . . 5 (𝜑 → (𝐴 × {(𝐹‘(0g𝑅))}) = (𝐴 × {(0g𝑆)}))
117108, 111, 1163eqtr3d 2773 . . . 4 (𝜑 → (𝐹 ∘ (0g𝑌)) = (𝐴 × {(0g𝑆)}))
11810, 112pws0g 18733 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑆)}) = (0g𝑍))
1199, 4, 118syl2anc 582 . . . 4 (𝜑 → (𝐴 × {(0g𝑆)}) = (0g𝑍))
120102, 117, 1193eqtrd 2769 . . 3 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍))
12128, 95, 1203jca 1125 . 2 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) ∧ ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍)))
122 eqid 2725 . . 3 (0g𝑍) = (0g𝑍)
12317, 24, 59, 78, 97, 122ismhm 18745 . 2 ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍) ↔ ((𝑌 ∈ Mnd ∧ 𝑍 ∈ Mnd) ∧ ((𝑔𝐵 ↦ (𝐹𝑔)):𝐵⟶(Base‘𝑍) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑔𝐵 ↦ (𝐹𝑔))‘(𝑥(+g𝑌)𝑦)) = (((𝑔𝐵 ↦ (𝐹𝑔))‘𝑥)(+g𝑍)((𝑔𝐵 ↦ (𝐹𝑔))‘𝑦)) ∧ ((𝑔𝐵 ↦ (𝐹𝑔))‘(0g𝑌)) = (0g𝑍))))
1247, 12, 121, 123syl21anbrc 1341 1 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  {csn 4630  cmpt 5232   × cxp 5676  ccom 5682   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  Basecbs 17183  +gcplusg 17236  0gc0g 17424  s cpws 17431  Mndcmnd 18697   MndHom cmhm 18741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-prds 17432  df-pws 17434  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743
This theorem is referenced by:  pwsco2rhm  20454
  Copyright terms: Public domain W3C validator