MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwmhm Structured version   Visualization version   GIF version

Theorem gsumwmhm 18726
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
gsumwmhm ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))

Proof of Theorem gsumwmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7417 . . . . 5 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (𝑀 Σg ∅))
2 eqid 2733 . . . . . 6 (0g𝑀) = (0g𝑀)
32gsum0 18603 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
41, 3eqtrdi 2789 . . . 4 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (0g𝑀))
54fveq2d 6896 . . 3 (𝑊 = ∅ → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(0g𝑀)))
6 coeq2 5859 . . . . . 6 (𝑊 = ∅ → (𝐻𝑊) = (𝐻 ∘ ∅))
7 co02 6260 . . . . . 6 (𝐻 ∘ ∅) = ∅
86, 7eqtrdi 2789 . . . . 5 (𝑊 = ∅ → (𝐻𝑊) = ∅)
98oveq2d 7425 . . . 4 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (𝑁 Σg ∅))
10 eqid 2733 . . . . 5 (0g𝑁) = (0g𝑁)
1110gsum0 18603 . . . 4 (𝑁 Σg ∅) = (0g𝑁)
129, 11eqtrdi 2789 . . 3 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (0g𝑁))
135, 12eqeq12d 2749 . 2 (𝑊 = ∅ → ((𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)) ↔ (𝐻‘(0g𝑀)) = (0g𝑁)))
14 mhmrcl1 18675 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514ad2antrr 725 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑀 ∈ Mnd)
16 gsumwmhm.b . . . . . . 7 𝐵 = (Base‘𝑀)
17 eqid 2733 . . . . . . 7 (+g𝑀) = (+g𝑀)
1816, 17mndcl 18633 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
19183expb 1121 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
2015, 19sylan 581 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
21 wrdf 14469 . . . . . . 7 (𝑊 ∈ Word 𝐵𝑊:(0..^(♯‘𝑊))⟶𝐵)
2221ad2antlr 726 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝐵)
23 wrdfin 14482 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐵𝑊 ∈ Fin)
2423adantl 483 . . . . . . . . . . 11 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → 𝑊 ∈ Fin)
25 hashnncl 14326 . . . . . . . . . . 11 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
2624, 25syl 17 . . . . . . . . . 10 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
2726biimpar 479 . . . . . . . . 9 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2827nnzd 12585 . . . . . . . 8 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
29 fzoval 13633 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3028, 29syl 17 . . . . . . 7 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3130feq2d 6704 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝐵𝑊:(0...((♯‘𝑊) − 1))⟶𝐵))
3222, 31mpbid 231 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵)
3332ffvelcdmda 7087 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝐵)
34 nnm1nn0 12513 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
3527, 34syl 17 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
36 nn0uz 12864 . . . . 5 0 = (ℤ‘0)
3735, 36eleqtrdi 2844 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
38 eqid 2733 . . . . . . 7 (+g𝑁) = (+g𝑁)
3916, 17, 38mhmlin 18679 . . . . . 6 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑥𝐵𝑦𝐵) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
40393expb 1121 . . . . 5 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
4140ad4ant14 751 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
4232ffnd 6719 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 Fn (0...((♯‘𝑊) − 1)))
43 fvco2 6989 . . . . . 6 ((𝑊 Fn (0...((♯‘𝑊) − 1)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
4442, 43sylan 581 . . . . 5 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
4544eqcomd 2739 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝐻‘(𝑊𝑥)) = ((𝐻𝑊)‘𝑥))
4620, 33, 37, 41, 45seqhomo 14015 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1))) = (seq0((+g𝑁), (𝐻𝑊))‘((♯‘𝑊) − 1)))
4716, 17, 15, 37, 32gsumval2 18605 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑀 Σg 𝑊) = (seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1)))
4847fveq2d 6896 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1))))
49 eqid 2733 . . . 4 (Base‘𝑁) = (Base‘𝑁)
50 mhmrcl2 18676 . . . . 5 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd)
5150ad2antrr 725 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑁 ∈ Mnd)
5216, 49mhmf 18677 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝐻:𝐵⟶(Base‘𝑁))
5352ad2antrr 725 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐻:𝐵⟶(Base‘𝑁))
54 fco 6742 . . . . 5 ((𝐻:𝐵⟶(Base‘𝑁) ∧ 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵) → (𝐻𝑊):(0...((♯‘𝑊) − 1))⟶(Base‘𝑁))
5553, 32, 54syl2anc 585 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻𝑊):(0...((♯‘𝑊) − 1))⟶(Base‘𝑁))
5649, 38, 51, 37, 55gsumval2 18605 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑁 Σg (𝐻𝑊)) = (seq0((+g𝑁), (𝐻𝑊))‘((♯‘𝑊) − 1)))
5746, 48, 563eqtr4d 2783 . 2 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
582, 10mhm0 18680 . . 3 (𝐻 ∈ (𝑀 MndHom 𝑁) → (𝐻‘(0g𝑀)) = (0g𝑁))
5958adantr 482 . 2 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(0g𝑀)) = (0g𝑁))
6013, 57, 59pm2.61ne 3028 1 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  c0 4323  ccom 5681   Fn wfn 6539  wf 6540  cfv 6544  (class class class)co 7409  Fincfn 8939  0cc0 11110  1c1 11111  cmin 11444  cn 12212  0cn0 12472  cz 12558  cuz 12822  ...cfz 13484  ..^cfzo 13627  seqcseq 13966  chash 14290  Word cword 14464  Basecbs 17144  +gcplusg 17197  0gc0g 17385   Σg cgsu 17386  Mndcmnd 18625   MndHom cmhm 18669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-seq 13967  df-hash 14291  df-word 14465  df-0g 17387  df-gsum 17388  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671
This theorem is referenced by:  frmdup3lem  18747  symgtrinv  19340  frgpup3lem  19645
  Copyright terms: Public domain W3C validator