MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwmhm Structured version   Visualization version   GIF version

Theorem gsumwmhm 18772
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
gsumwmhm ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))

Proof of Theorem gsumwmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . 5 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (𝑀 Σg ∅))
2 eqid 2729 . . . . . 6 (0g𝑀) = (0g𝑀)
32gsum0 18611 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
41, 3eqtrdi 2780 . . . 4 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (0g𝑀))
54fveq2d 6862 . . 3 (𝑊 = ∅ → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(0g𝑀)))
6 coeq2 5822 . . . . . 6 (𝑊 = ∅ → (𝐻𝑊) = (𝐻 ∘ ∅))
7 co02 6233 . . . . . 6 (𝐻 ∘ ∅) = ∅
86, 7eqtrdi 2780 . . . . 5 (𝑊 = ∅ → (𝐻𝑊) = ∅)
98oveq2d 7403 . . . 4 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (𝑁 Σg ∅))
10 eqid 2729 . . . . 5 (0g𝑁) = (0g𝑁)
1110gsum0 18611 . . . 4 (𝑁 Σg ∅) = (0g𝑁)
129, 11eqtrdi 2780 . . 3 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (0g𝑁))
135, 12eqeq12d 2745 . 2 (𝑊 = ∅ → ((𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)) ↔ (𝐻‘(0g𝑀)) = (0g𝑁)))
14 mhmrcl1 18714 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514ad2antrr 726 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑀 ∈ Mnd)
16 gsumwmhm.b . . . . . . 7 𝐵 = (Base‘𝑀)
17 eqid 2729 . . . . . . 7 (+g𝑀) = (+g𝑀)
1816, 17mndcl 18669 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
19183expb 1120 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
2015, 19sylan 580 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
21 wrdf 14483 . . . . . . 7 (𝑊 ∈ Word 𝐵𝑊:(0..^(♯‘𝑊))⟶𝐵)
2221ad2antlr 727 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝐵)
23 wrdfin 14497 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐵𝑊 ∈ Fin)
2423adantl 481 . . . . . . . . . . 11 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → 𝑊 ∈ Fin)
25 hashnncl 14331 . . . . . . . . . . 11 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
2624, 25syl 17 . . . . . . . . . 10 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
2726biimpar 477 . . . . . . . . 9 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2827nnzd 12556 . . . . . . . 8 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
29 fzoval 13621 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3028, 29syl 17 . . . . . . 7 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3130feq2d 6672 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝐵𝑊:(0...((♯‘𝑊) − 1))⟶𝐵))
3222, 31mpbid 232 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵)
3332ffvelcdmda 7056 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝐵)
34 nnm1nn0 12483 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
3527, 34syl 17 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
36 nn0uz 12835 . . . . 5 0 = (ℤ‘0)
3735, 36eleqtrdi 2838 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
38 eqid 2729 . . . . . . 7 (+g𝑁) = (+g𝑁)
3916, 17, 38mhmlin 18720 . . . . . 6 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑥𝐵𝑦𝐵) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
40393expb 1120 . . . . 5 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
4140ad4ant14 752 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
4232ffnd 6689 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 Fn (0...((♯‘𝑊) − 1)))
43 fvco2 6958 . . . . . 6 ((𝑊 Fn (0...((♯‘𝑊) − 1)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
4442, 43sylan 580 . . . . 5 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
4544eqcomd 2735 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝐻‘(𝑊𝑥)) = ((𝐻𝑊)‘𝑥))
4620, 33, 37, 41, 45seqhomo 14014 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1))) = (seq0((+g𝑁), (𝐻𝑊))‘((♯‘𝑊) − 1)))
4716, 17, 15, 37, 32gsumval2 18613 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑀 Σg 𝑊) = (seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1)))
4847fveq2d 6862 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1))))
49 eqid 2729 . . . 4 (Base‘𝑁) = (Base‘𝑁)
50 mhmrcl2 18715 . . . . 5 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd)
5150ad2antrr 726 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑁 ∈ Mnd)
5216, 49mhmf 18716 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝐻:𝐵⟶(Base‘𝑁))
5352ad2antrr 726 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐻:𝐵⟶(Base‘𝑁))
54 fco 6712 . . . . 5 ((𝐻:𝐵⟶(Base‘𝑁) ∧ 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵) → (𝐻𝑊):(0...((♯‘𝑊) − 1))⟶(Base‘𝑁))
5553, 32, 54syl2anc 584 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻𝑊):(0...((♯‘𝑊) − 1))⟶(Base‘𝑁))
5649, 38, 51, 37, 55gsumval2 18613 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑁 Σg (𝐻𝑊)) = (seq0((+g𝑁), (𝐻𝑊))‘((♯‘𝑊) − 1)))
5746, 48, 563eqtr4d 2774 . 2 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
582, 10mhm0 18721 . . 3 (𝐻 ∈ (𝑀 MndHom 𝑁) → (𝐻‘(0g𝑀)) = (0g𝑁))
5958adantr 480 . 2 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(0g𝑀)) = (0g𝑁))
6013, 57, 59pm2.61ne 3010 1 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4296  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  1c1 11069  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  seqcseq 13966  chash 14295  Word cword 14478  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661   MndHom cmhm 18708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710
This theorem is referenced by:  frmdup3lem  18793  symgtrinv  19402  frgpup3lem  19707
  Copyright terms: Public domain W3C validator