MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwmhm Structured version   Visualization version   GIF version

Theorem gsumwmhm 17863
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
gsumwmhm ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))

Proof of Theorem gsumwmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6982 . . . . 5 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (𝑀 Σg ∅))
2 eqid 2771 . . . . . 6 (0g𝑀) = (0g𝑀)
32gsum0 17758 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
41, 3syl6eq 2823 . . . 4 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (0g𝑀))
54fveq2d 6500 . . 3 (𝑊 = ∅ → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(0g𝑀)))
6 coeq2 5575 . . . . . 6 (𝑊 = ∅ → (𝐻𝑊) = (𝐻 ∘ ∅))
7 co02 5949 . . . . . 6 (𝐻 ∘ ∅) = ∅
86, 7syl6eq 2823 . . . . 5 (𝑊 = ∅ → (𝐻𝑊) = ∅)
98oveq2d 6990 . . . 4 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (𝑁 Σg ∅))
10 eqid 2771 . . . . 5 (0g𝑁) = (0g𝑁)
1110gsum0 17758 . . . 4 (𝑁 Σg ∅) = (0g𝑁)
129, 11syl6eq 2823 . . 3 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (0g𝑁))
135, 12eqeq12d 2786 . 2 (𝑊 = ∅ → ((𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)) ↔ (𝐻‘(0g𝑀)) = (0g𝑁)))
14 mhmrcl1 17818 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514ad2antrr 714 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑀 ∈ Mnd)
16 gsumwmhm.b . . . . . . 7 𝐵 = (Base‘𝑀)
17 eqid 2771 . . . . . . 7 (+g𝑀) = (+g𝑀)
1816, 17mndcl 17781 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
19183expb 1101 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
2015, 19sylan 572 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
21 wrdf 13675 . . . . . . 7 (𝑊 ∈ Word 𝐵𝑊:(0..^(♯‘𝑊))⟶𝐵)
2221ad2antlr 715 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝐵)
23 wrdfin 13691 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐵𝑊 ∈ Fin)
2423adantl 474 . . . . . . . . . . 11 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → 𝑊 ∈ Fin)
25 hashnncl 13540 . . . . . . . . . . 11 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
2624, 25syl 17 . . . . . . . . . 10 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
2726biimpar 470 . . . . . . . . 9 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2827nnzd 11897 . . . . . . . 8 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
29 fzoval 12853 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3028, 29syl 17 . . . . . . 7 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3130feq2d 6327 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝐵𝑊:(0...((♯‘𝑊) − 1))⟶𝐵))
3222, 31mpbid 224 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵)
3332ffvelrnda 6674 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝐵)
34 nnm1nn0 11748 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
3527, 34syl 17 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
36 nn0uz 12092 . . . . 5 0 = (ℤ‘0)
3735, 36syl6eleq 2869 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
38 eqid 2771 . . . . . . 7 (+g𝑁) = (+g𝑁)
3916, 17, 38mhmlin 17822 . . . . . 6 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑥𝐵𝑦𝐵) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
40393expb 1101 . . . . 5 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
4140ad4ant14 740 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
4232ffnd 6342 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 Fn (0...((♯‘𝑊) − 1)))
43 fvco2 6584 . . . . . 6 ((𝑊 Fn (0...((♯‘𝑊) − 1)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
4442, 43sylan 572 . . . . 5 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
4544eqcomd 2777 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝐻‘(𝑊𝑥)) = ((𝐻𝑊)‘𝑥))
4620, 33, 37, 41, 45seqhomo 13230 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1))) = (seq0((+g𝑁), (𝐻𝑊))‘((♯‘𝑊) − 1)))
4716, 17, 15, 37, 32gsumval2 17760 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑀 Σg 𝑊) = (seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1)))
4847fveq2d 6500 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1))))
49 eqid 2771 . . . 4 (Base‘𝑁) = (Base‘𝑁)
50 mhmrcl2 17819 . . . . 5 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd)
5150ad2antrr 714 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑁 ∈ Mnd)
5216, 49mhmf 17820 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝐻:𝐵⟶(Base‘𝑁))
5352ad2antrr 714 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐻:𝐵⟶(Base‘𝑁))
54 fco 6358 . . . . 5 ((𝐻:𝐵⟶(Base‘𝑁) ∧ 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵) → (𝐻𝑊):(0...((♯‘𝑊) − 1))⟶(Base‘𝑁))
5553, 32, 54syl2anc 576 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻𝑊):(0...((♯‘𝑊) − 1))⟶(Base‘𝑁))
5649, 38, 51, 37, 55gsumval2 17760 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑁 Σg (𝐻𝑊)) = (seq0((+g𝑁), (𝐻𝑊))‘((♯‘𝑊) − 1)))
5746, 48, 563eqtr4d 2817 . 2 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
582, 10mhm0 17823 . . 3 (𝐻 ∈ (𝑀 MndHom 𝑁) → (𝐻‘(0g𝑀)) = (0g𝑁))
5958adantr 473 . 2 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(0g𝑀)) = (0g𝑁))
6013, 57, 59pm2.61ne 3046 1 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wne 2960  c0 4172  ccom 5407   Fn wfn 6180  wf 6181  cfv 6185  (class class class)co 6974  Fincfn 8304  0cc0 10333  1c1 10334  cmin 10668  cn 11437  0cn0 11705  cz 11791  cuz 12056  ...cfz 12706  ..^cfzo 12847  seqcseq 13182  chash 13503  Word cword 13670  Basecbs 16337  +gcplusg 16419  0gc0g 16567   Σg cgsu 16568  Mndcmnd 17774   MndHom cmhm 17813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707  df-fzo 12848  df-seq 13183  df-hash 13504  df-word 13671  df-0g 16569  df-gsum 16570  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mhm 17815
This theorem is referenced by:  frmdup3lem  17884  symgtrinv  18373  frgpup3lem  18675
  Copyright terms: Public domain W3C validator