MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmmulg Structured version   Visualization version   GIF version

Theorem mhmmulg 19133
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mhmmulg.b 𝐵 = (Base‘𝐺)
mhmmulg.s · = (.g𝐺)
mhmmulg.t × = (.g𝐻)
Assertion
Ref Expression
mhmmulg ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))

Proof of Theorem mhmmulg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7454 . . . . . 6 (𝑛 = 0 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(0 · 𝑋)))
2 oveq1 7438 . . . . . 6 (𝑛 = 0 → (𝑛 × (𝐹𝑋)) = (0 × (𝐹𝑋)))
31, 2eqeq12d 2753 . . . . 5 (𝑛 = 0 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋))))
43imbi2d 340 . . . 4 (𝑛 = 0 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋)))))
5 fvoveq1 7454 . . . . . 6 (𝑛 = 𝑚 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(𝑚 · 𝑋)))
6 oveq1 7438 . . . . . 6 (𝑛 = 𝑚 → (𝑛 × (𝐹𝑋)) = (𝑚 × (𝐹𝑋)))
75, 6eqeq12d 2753 . . . . 5 (𝑛 = 𝑚 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋))))
87imbi2d 340 . . . 4 (𝑛 = 𝑚 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)))))
9 fvoveq1 7454 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘((𝑚 + 1) · 𝑋)))
10 oveq1 7438 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑛 × (𝐹𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))
119, 10eqeq12d 2753 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋))))
1211imbi2d 340 . . . 4 (𝑛 = (𝑚 + 1) → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
13 fvoveq1 7454 . . . . . 6 (𝑛 = 𝑁 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(𝑁 · 𝑋)))
14 oveq1 7438 . . . . . 6 (𝑛 = 𝑁 → (𝑛 × (𝐹𝑋)) = (𝑁 × (𝐹𝑋)))
1513, 14eqeq12d 2753 . . . . 5 (𝑛 = 𝑁 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋))))
1615imbi2d 340 . . . 4 (𝑛 = 𝑁 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))))
17 eqid 2737 . . . . . . 7 (0g𝐺) = (0g𝐺)
18 eqid 2737 . . . . . . 7 (0g𝐻) = (0g𝐻)
1917, 18mhm0 18807 . . . . . 6 (𝐹 ∈ (𝐺 MndHom 𝐻) → (𝐹‘(0g𝐺)) = (0g𝐻))
2019adantr 480 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0g𝐺)) = (0g𝐻))
21 mhmmulg.b . . . . . . . 8 𝐵 = (Base‘𝐺)
22 mhmmulg.s . . . . . . . 8 · = (.g𝐺)
2321, 17, 22mulg0 19092 . . . . . . 7 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2423adantl 481 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2524fveq2d 6910 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (𝐹‘(0g𝐺)))
26 eqid 2737 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
2721, 26mhmf 18802 . . . . . . 7 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
2827ffvelcdmda 7104 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (Base‘𝐻))
29 mhmmulg.t . . . . . . 7 × = (.g𝐻)
3026, 18, 29mulg0 19092 . . . . . 6 ((𝐹𝑋) ∈ (Base‘𝐻) → (0 × (𝐹𝑋)) = (0g𝐻))
3128, 30syl 17 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (0 × (𝐹𝑋)) = (0g𝐻))
3220, 25, 313eqtr4d 2787 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋)))
33 oveq1 7438 . . . . . . 7 ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
34 mhmrcl1 18800 . . . . . . . . . . . 12 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐺 ∈ Mnd)
3534ad2antrr 726 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐺 ∈ Mnd)
36 simpr 484 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
37 simplr 769 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑋𝐵)
38 eqid 2737 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
3921, 22, 38mulgnn0p1 19103 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0𝑋𝐵) → ((𝑚 + 1) · 𝑋) = ((𝑚 · 𝑋)(+g𝐺)𝑋))
4035, 36, 37, 39syl3anc 1373 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) = ((𝑚 · 𝑋)(+g𝐺)𝑋))
4140fveq2d 6910 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 + 1) · 𝑋)) = (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)))
42 simpll 767 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐹 ∈ (𝐺 MndHom 𝐻))
4334ad2antrr 726 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝐺 ∈ Mnd)
44 simplr 769 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝑚 ∈ ℕ0)
45 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝑋𝐵)
4621, 22, 43, 44, 45mulgnn0cld 19113 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
4746an32s 652 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵)
48 eqid 2737 . . . . . . . . . . 11 (+g𝐻) = (+g𝐻)
4921, 38, 48mhmlin 18806 . . . . . . . . . 10 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ (𝑚 · 𝑋) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
5042, 47, 37, 49syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
5141, 50eqtrd 2777 . . . . . . . 8 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
52 mhmrcl2 18801 . . . . . . . . . 10 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐻 ∈ Mnd)
5352ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐻 ∈ Mnd)
5428adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑋) ∈ (Base‘𝐻))
5526, 29, 48mulgnn0p1 19103 . . . . . . . . 9 ((𝐻 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → ((𝑚 + 1) × (𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
5653, 36, 54, 55syl3anc 1373 . . . . . . . 8 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) × (𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
5751, 56eqeq12d 2753 . . . . . . 7 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)) ↔ ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋))))
5833, 57imbitrrid 246 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋))))
5958expcom 413 . . . . 5 (𝑚 ∈ ℕ0 → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
6059a2d 29 . . . 4 (𝑚 ∈ ℕ0 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋))) → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
614, 8, 12, 16, 32, 60nn0ind 12713 . . 3 (𝑁 ∈ ℕ0 → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋))))
62613impib 1117 . 2 ((𝑁 ∈ ℕ0𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
63623com12 1124 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  0cn0 12526  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Mndcmnd 18747   MndHom cmhm 18794  .gcmg 19085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-mulg 19086
This theorem is referenced by:  pwsmulg  19137  ghmmulg  19246  pwsexpg  20326  fermltlchr  21544  evlspw  22117  ply1fermltlchr  22316  evls1pw  22330  evl1expd  22349  rhmply1mon  22393  cayhamlem4  22894  dchrfi  27299  lgsqrlem1  27390  lgseisenlem4  27422  dchrisum0flblem1  27552  znfermltl  33394  aks5lem3a  42190  selvvvval  42595  evlselv  42597
  Copyright terms: Public domain W3C validator