| Step | Hyp | Ref
| Expression |
| 1 | | fvoveq1 7454 |
. . . . . 6
⊢ (𝑛 = 0 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(0 · 𝑋))) |
| 2 | | oveq1 7438 |
. . . . . 6
⊢ (𝑛 = 0 → (𝑛 × (𝐹‘𝑋)) = (0 × (𝐹‘𝑋))) |
| 3 | 1, 2 | eqeq12d 2753 |
. . . . 5
⊢ (𝑛 = 0 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹‘𝑋)) ↔ (𝐹‘(0 · 𝑋)) = (0 × (𝐹‘𝑋)))) |
| 4 | 3 | imbi2d 340 |
. . . 4
⊢ (𝑛 = 0 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹‘𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(0 · 𝑋)) = (0 × (𝐹‘𝑋))))) |
| 5 | | fvoveq1 7454 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(𝑚 · 𝑋))) |
| 6 | | oveq1 7438 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝑛 × (𝐹‘𝑋)) = (𝑚 × (𝐹‘𝑋))) |
| 7 | 5, 6 | eqeq12d 2753 |
. . . . 5
⊢ (𝑛 = 𝑚 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹‘𝑋)) ↔ (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹‘𝑋)))) |
| 8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑛 = 𝑚 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹‘𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹‘𝑋))))) |
| 9 | | fvoveq1 7454 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘((𝑚 + 1) · 𝑋))) |
| 10 | | oveq1 7438 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (𝑛 × (𝐹‘𝑋)) = ((𝑚 + 1) × (𝐹‘𝑋))) |
| 11 | 9, 10 | eqeq12d 2753 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹‘𝑋)) ↔ (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹‘𝑋)))) |
| 12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹‘𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹‘𝑋))))) |
| 13 | | fvoveq1 7454 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(𝑁 · 𝑋))) |
| 14 | | oveq1 7438 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑛 × (𝐹‘𝑋)) = (𝑁 × (𝐹‘𝑋))) |
| 15 | 13, 14 | eqeq12d 2753 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹‘𝑋)) ↔ (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋)))) |
| 16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑛 = 𝑁 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹‘𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))))) |
| 17 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 18 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 19 | 17, 18 | mhm0 18807 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
| 21 | | mhmmulg.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 22 | | mhmmulg.s |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
| 23 | 21, 17, 22 | mulg0 19092 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 24 | 23 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝐺)) |
| 25 | 24 | fveq2d 6910 |
. . . . 5
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(0 · 𝑋)) = (𝐹‘(0g‘𝐺))) |
| 26 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 27 | 21, 26 | mhmf 18802 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻)) |
| 28 | 27 | ffvelcdmda 7104 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ (Base‘𝐻)) |
| 29 | | mhmmulg.t |
. . . . . . 7
⊢ × =
(.g‘𝐻) |
| 30 | 26, 18, 29 | mulg0 19092 |
. . . . . 6
⊢ ((𝐹‘𝑋) ∈ (Base‘𝐻) → (0 × (𝐹‘𝑋)) = (0g‘𝐻)) |
| 31 | 28, 30 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (0 × (𝐹‘𝑋)) = (0g‘𝐻)) |
| 32 | 20, 25, 31 | 3eqtr4d 2787 |
. . . 4
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(0 · 𝑋)) = (0 × (𝐹‘𝑋))) |
| 33 | | oveq1 7438 |
. . . . . . 7
⊢ ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹‘𝑋)) → ((𝐹‘(𝑚 · 𝑋))(+g‘𝐻)(𝐹‘𝑋)) = ((𝑚 × (𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑋))) |
| 34 | | mhmrcl1 18800 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐺 ∈ Mnd) |
| 35 | 34 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐺 ∈ Mnd) |
| 36 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
| 37 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
| 38 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 39 | 21, 22, 38 | mulgnn0p1 19103 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑚 + 1) · 𝑋) = ((𝑚 · 𝑋)(+g‘𝐺)𝑋)) |
| 40 | 35, 36, 37, 39 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) = ((𝑚 · 𝑋)(+g‘𝐺)𝑋)) |
| 41 | 40 | fveq2d 6910 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 + 1) · 𝑋)) = (𝐹‘((𝑚 · 𝑋)(+g‘𝐺)𝑋))) |
| 42 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| 43 | 34 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Mnd) |
| 44 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋 ∈ 𝐵) → 𝑚 ∈ ℕ0) |
| 45 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 46 | 21, 22, 43, 44, 45 | mulgnn0cld 19113 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋 ∈ 𝐵) → (𝑚 · 𝑋) ∈ 𝐵) |
| 47 | 46 | an32s 652 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵) |
| 48 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 49 | 21, 38, 48 | mhmlin 18806 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ (𝑚 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘((𝑚 · 𝑋)(+g‘𝐺)𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g‘𝐻)(𝐹‘𝑋))) |
| 50 | 42, 47, 37, 49 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 · 𝑋)(+g‘𝐺)𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g‘𝐻)(𝐹‘𝑋))) |
| 51 | 41, 50 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g‘𝐻)(𝐹‘𝑋))) |
| 52 | | mhmrcl2 18801 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐻 ∈ Mnd) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐻 ∈ Mnd) |
| 54 | 28 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑋) ∈ (Base‘𝐻)) |
| 55 | 26, 29, 48 | mulgnn0p1 19103 |
. . . . . . . . 9
⊢ ((𝐻 ∈ Mnd ∧ 𝑚 ∈ ℕ0
∧ (𝐹‘𝑋) ∈ (Base‘𝐻)) → ((𝑚 + 1) × (𝐹‘𝑋)) = ((𝑚 × (𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑋))) |
| 56 | 53, 36, 54, 55 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) × (𝐹‘𝑋)) = ((𝑚 × (𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑋))) |
| 57 | 51, 56 | eqeq12d 2753 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹‘𝑋)) ↔ ((𝐹‘(𝑚 · 𝑋))(+g‘𝐻)(𝐹‘𝑋)) = ((𝑚 × (𝐹‘𝑋))(+g‘𝐻)(𝐹‘𝑋)))) |
| 58 | 33, 57 | imbitrrid 246 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹‘𝑋)) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹‘𝑋)))) |
| 59 | 58 | expcom 413 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹‘𝑋)) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹‘𝑋))))) |
| 60 | 59 | a2d 29 |
. . . 4
⊢ (𝑚 ∈ ℕ0
→ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹‘𝑋))) → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹‘𝑋))))) |
| 61 | 4, 8, 12, 16, 32, 60 | nn0ind 12713 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋)))) |
| 62 | 61 | 3impib 1117 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) |
| 63 | 62 | 3com12 1124 |
1
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) |