MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmmulg Structured version   Visualization version   GIF version

Theorem mhmmulg 18744
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mhmmulg.b 𝐵 = (Base‘𝐺)
mhmmulg.s · = (.g𝐺)
mhmmulg.t × = (.g𝐻)
Assertion
Ref Expression
mhmmulg ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))

Proof of Theorem mhmmulg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7298 . . . . . 6 (𝑛 = 0 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(0 · 𝑋)))
2 oveq1 7282 . . . . . 6 (𝑛 = 0 → (𝑛 × (𝐹𝑋)) = (0 × (𝐹𝑋)))
31, 2eqeq12d 2754 . . . . 5 (𝑛 = 0 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋))))
43imbi2d 341 . . . 4 (𝑛 = 0 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋)))))
5 fvoveq1 7298 . . . . . 6 (𝑛 = 𝑚 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(𝑚 · 𝑋)))
6 oveq1 7282 . . . . . 6 (𝑛 = 𝑚 → (𝑛 × (𝐹𝑋)) = (𝑚 × (𝐹𝑋)))
75, 6eqeq12d 2754 . . . . 5 (𝑛 = 𝑚 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋))))
87imbi2d 341 . . . 4 (𝑛 = 𝑚 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)))))
9 fvoveq1 7298 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘((𝑚 + 1) · 𝑋)))
10 oveq1 7282 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑛 × (𝐹𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))
119, 10eqeq12d 2754 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋))))
1211imbi2d 341 . . . 4 (𝑛 = (𝑚 + 1) → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
13 fvoveq1 7298 . . . . . 6 (𝑛 = 𝑁 → (𝐹‘(𝑛 · 𝑋)) = (𝐹‘(𝑁 · 𝑋)))
14 oveq1 7282 . . . . . 6 (𝑛 = 𝑁 → (𝑛 × (𝐹𝑋)) = (𝑁 × (𝐹𝑋)))
1513, 14eqeq12d 2754 . . . . 5 (𝑛 = 𝑁 → ((𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋)) ↔ (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋))))
1615imbi2d 341 . . . 4 (𝑛 = 𝑁 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑛 · 𝑋)) = (𝑛 × (𝐹𝑋))) ↔ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))))
17 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
18 eqid 2738 . . . . . . 7 (0g𝐻) = (0g𝐻)
1917, 18mhm0 18438 . . . . . 6 (𝐹 ∈ (𝐺 MndHom 𝐻) → (𝐹‘(0g𝐺)) = (0g𝐻))
2019adantr 481 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0g𝐺)) = (0g𝐻))
21 mhmmulg.b . . . . . . . 8 𝐵 = (Base‘𝐺)
22 mhmmulg.s . . . . . . . 8 · = (.g𝐺)
2321, 17, 22mulg0 18707 . . . . . . 7 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2423adantl 482 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2524fveq2d 6778 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (𝐹‘(0g𝐺)))
26 eqid 2738 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
2721, 26mhmf 18435 . . . . . . 7 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
2827ffvelrnda 6961 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (Base‘𝐻))
29 mhmmulg.t . . . . . . 7 × = (.g𝐻)
3026, 18, 29mulg0 18707 . . . . . 6 ((𝐹𝑋) ∈ (Base‘𝐻) → (0 × (𝐹𝑋)) = (0g𝐻))
3128, 30syl 17 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (0 × (𝐹𝑋)) = (0g𝐻))
3220, 25, 313eqtr4d 2788 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(0 · 𝑋)) = (0 × (𝐹𝑋)))
33 oveq1 7282 . . . . . . 7 ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
34 mhmrcl1 18433 . . . . . . . . . . . 12 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐺 ∈ Mnd)
3534ad2antrr 723 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐺 ∈ Mnd)
36 simpr 485 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
37 simplr 766 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑋𝐵)
38 eqid 2738 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
3921, 22, 38mulgnn0p1 18715 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0𝑋𝐵) → ((𝑚 + 1) · 𝑋) = ((𝑚 · 𝑋)(+g𝐺)𝑋))
4035, 36, 37, 39syl3anc 1370 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) = ((𝑚 · 𝑋)(+g𝐺)𝑋))
4140fveq2d 6778 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 + 1) · 𝑋)) = (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)))
42 simpll 764 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐹 ∈ (𝐺 MndHom 𝐻))
4334ad2antrr 723 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝐺 ∈ Mnd)
44 simplr 766 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝑚 ∈ ℕ0)
45 simpr 485 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → 𝑋𝐵)
4621, 22mulgnn0cl 18720 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
4743, 44, 45, 46syl3anc 1370 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑚 ∈ ℕ0) ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
4847an32s 649 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵)
49 eqid 2738 . . . . . . . . . . 11 (+g𝐻) = (+g𝐻)
5021, 38, 49mhmlin 18437 . . . . . . . . . 10 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ (𝑚 · 𝑋) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
5142, 48, 37, 50syl3anc 1370 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 · 𝑋)(+g𝐺)𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
5241, 51eqtrd 2778 . . . . . . . 8 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)))
53 mhmrcl2 18434 . . . . . . . . . 10 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐻 ∈ Mnd)
5453ad2antrr 723 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → 𝐻 ∈ Mnd)
5528adantr 481 . . . . . . . . 9 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑋) ∈ (Base‘𝐻))
5626, 29, 49mulgnn0p1 18715 . . . . . . . . 9 ((𝐻 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → ((𝑚 + 1) × (𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
5754, 36, 55, 56syl3anc 1370 . . . . . . . 8 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) × (𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋)))
5852, 57eqeq12d 2754 . . . . . . 7 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)) ↔ ((𝐹‘(𝑚 · 𝑋))(+g𝐻)(𝐹𝑋)) = ((𝑚 × (𝐹𝑋))(+g𝐻)(𝐹𝑋))))
5933, 58syl5ibr 245 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋))))
6059expcom 414 . . . . 5 (𝑚 ∈ ℕ0 → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → ((𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋)) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
6160a2d 29 . . . 4 (𝑚 ∈ ℕ0 → (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑚 · 𝑋)) = (𝑚 × (𝐹𝑋))) → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) × (𝐹𝑋)))))
624, 8, 12, 16, 32, 61nn0ind 12415 . . 3 (𝑁 ∈ ℕ0 → ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋))))
63623impib 1115 . 2 ((𝑁 ∈ ℕ0𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
64633com12 1122 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  0cn0 12233  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385   MndHom cmhm 18428  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-mulg 18701
This theorem is referenced by:  pwsmulg  18748  ghmmulg  18846  evlspw  21303  evls1pw  21492  evl1expd  21511  cayhamlem4  22037  dchrfi  26403  lgsqrlem1  26494  lgseisenlem4  26526  dchrisum0flblem1  26656  znfermltl  31562  ply1fermltl  31670  pwsexpg  40268
  Copyright terms: Public domain W3C validator