MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm Structured version   Visualization version   GIF version

Theorem resmhm 18698
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resmhm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resmhm ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))

Proof of Theorem resmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 18673 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
2 resmhm.u . . . 4 𝑈 = (𝑆s 𝑋)
32submmnd 18691 . . 3 (𝑋 ∈ (SubMnd‘𝑆) → 𝑈 ∈ Mnd)
41, 3anim12ci 615 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd))
5 eqid 2733 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2733 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
75, 6mhmf 18674 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
85submss 18687 . . . . 5 (𝑋 ∈ (SubMnd‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
9 fssres 6755 . . . . 5 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
107, 8, 9syl2an 597 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
118adantl 483 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
122, 5ressbas2 17179 . . . . . 6 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1311, 12syl 17 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 = (Base‘𝑈))
1413feq2d 6701 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1510, 14mpbid 231 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
16 simpll 766 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
178ad2antlr 726 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑆))
18 simprl 770 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
1917, 18sseldd 3983 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (Base‘𝑆))
20 simprr 772 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
2117, 20sseldd 3983 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (Base‘𝑆))
22 eqid 2733 . . . . . . . 8 (+g𝑆) = (+g𝑆)
23 eqid 2733 . . . . . . . 8 (+g𝑇) = (+g𝑇)
245, 22, 23mhmlin 18676 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2516, 19, 21, 24syl3anc 1372 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2622submcl 18690 . . . . . . . . 9 ((𝑋 ∈ (SubMnd‘𝑆) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
27263expb 1121 . . . . . . . 8 ((𝑋 ∈ (SubMnd‘𝑆) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
2827adantll 713 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
2928fvresd 6909 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
30 fvres 6908 . . . . . . . 8 (𝑥𝑋 → ((𝐹𝑋)‘𝑥) = (𝐹𝑥))
31 fvres 6908 . . . . . . . 8 (𝑦𝑋 → ((𝐹𝑋)‘𝑦) = (𝐹𝑦))
3230, 31oveqan12d 7425 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3332adantl 483 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3425, 29, 333eqtr4d 2783 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
3534ralrimivva 3201 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
362, 22ressplusg 17232 . . . . . . . . 9 (𝑋 ∈ (SubMnd‘𝑆) → (+g𝑆) = (+g𝑈))
3736adantl 483 . . . . . . . 8 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (+g𝑆) = (+g𝑈))
3837oveqd 7423 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑥(+g𝑆)𝑦) = (𝑥(+g𝑈)𝑦))
3938fveqeq2d 6897 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4013, 39raleqbidv 3343 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4113, 40raleqbidv 3343 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4235, 41mpbid 231 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
43 eqid 2733 . . . . . . 7 (0g𝑆) = (0g𝑆)
4443subm0cl 18689 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑆) → (0g𝑆) ∈ 𝑋)
4544adantl 483 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g𝑆) ∈ 𝑋)
4645fvresd 6909 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑆)) = (𝐹‘(0g𝑆)))
472, 43subm0 18693 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑆) → (0g𝑆) = (0g𝑈))
4847adantl 483 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g𝑆) = (0g𝑈))
4948fveq2d 6893 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑆)) = ((𝐹𝑋)‘(0g𝑈)))
50 eqid 2733 . . . . . 6 (0g𝑇) = (0g𝑇)
5143, 50mhm0 18677 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
5251adantr 482 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹‘(0g𝑆)) = (0g𝑇))
5346, 49, 523eqtr3d 2781 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇))
5415, 42, 533jca 1129 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ∧ ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇)))
55 eqid 2733 . . 3 (Base‘𝑈) = (Base‘𝑈)
56 eqid 2733 . . 3 (+g𝑈) = (+g𝑈)
57 eqid 2733 . . 3 (0g𝑈) = (0g𝑈)
5855, 6, 56, 23, 57, 50ismhm 18670 . 2 ((𝐹𝑋) ∈ (𝑈 MndHom 𝑇) ↔ ((𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ∧ ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇))))
594, 54, 58sylanbrc 584 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wss 3948  cres 5678  wf 6537  cfv 6541  (class class class)co 7406  Basecbs 17141  s cress 17170  +gcplusg 17194  0gc0g 17382  Mndcmnd 18622   MndHom cmhm 18666  SubMndcsubmnd 18667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-0g 17384  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-mhm 18668  df-submnd 18669
This theorem is referenced by:  resrhm  20386  dchrghm  26749
  Copyright terms: Public domain W3C validator