MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm Structured version   Visualization version   GIF version

Theorem resmhm 18754
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resmhm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resmhm ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))

Proof of Theorem resmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 18722 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
2 resmhm.u . . . 4 𝑈 = (𝑆s 𝑋)
32submmnd 18747 . . 3 (𝑋 ∈ (SubMnd‘𝑆) → 𝑈 ∈ Mnd)
41, 3anim12ci 614 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd))
5 eqid 2730 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2730 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
75, 6mhmf 18723 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
85submss 18743 . . . . 5 (𝑋 ∈ (SubMnd‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
9 fssres 6729 . . . . 5 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
107, 8, 9syl2an 596 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
118adantl 481 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
122, 5ressbas2 17215 . . . . . 6 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1311, 12syl 17 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 = (Base‘𝑈))
1413feq2d 6675 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1510, 14mpbid 232 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
16 simpll 766 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
178ad2antlr 727 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑆))
18 simprl 770 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
1917, 18sseldd 3950 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (Base‘𝑆))
20 simprr 772 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
2117, 20sseldd 3950 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (Base‘𝑆))
22 eqid 2730 . . . . . . . 8 (+g𝑆) = (+g𝑆)
23 eqid 2730 . . . . . . . 8 (+g𝑇) = (+g𝑇)
245, 22, 23mhmlin 18727 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2516, 19, 21, 24syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2622submcl 18746 . . . . . . . . 9 ((𝑋 ∈ (SubMnd‘𝑆) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
27263expb 1120 . . . . . . . 8 ((𝑋 ∈ (SubMnd‘𝑆) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
2827adantll 714 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
2928fvresd 6881 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
30 fvres 6880 . . . . . . . 8 (𝑥𝑋 → ((𝐹𝑋)‘𝑥) = (𝐹𝑥))
31 fvres 6880 . . . . . . . 8 (𝑦𝑋 → ((𝐹𝑋)‘𝑦) = (𝐹𝑦))
3230, 31oveqan12d 7409 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3332adantl 481 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3425, 29, 333eqtr4d 2775 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
3534ralrimivva 3181 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
362, 22ressplusg 17261 . . . . . . . . 9 (𝑋 ∈ (SubMnd‘𝑆) → (+g𝑆) = (+g𝑈))
3736adantl 481 . . . . . . . 8 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (+g𝑆) = (+g𝑈))
3837oveqd 7407 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑥(+g𝑆)𝑦) = (𝑥(+g𝑈)𝑦))
3938fveqeq2d 6869 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4013, 39raleqbidv 3321 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4113, 40raleqbidv 3321 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4235, 41mpbid 232 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
43 eqid 2730 . . . . . . 7 (0g𝑆) = (0g𝑆)
4443subm0cl 18745 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑆) → (0g𝑆) ∈ 𝑋)
4544adantl 481 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g𝑆) ∈ 𝑋)
4645fvresd 6881 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑆)) = (𝐹‘(0g𝑆)))
472, 43subm0 18749 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑆) → (0g𝑆) = (0g𝑈))
4847adantl 481 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g𝑆) = (0g𝑈))
4948fveq2d 6865 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑆)) = ((𝐹𝑋)‘(0g𝑈)))
50 eqid 2730 . . . . . 6 (0g𝑇) = (0g𝑇)
5143, 50mhm0 18728 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
5251adantr 480 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹‘(0g𝑆)) = (0g𝑇))
5346, 49, 523eqtr3d 2773 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇))
5415, 42, 533jca 1128 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ∧ ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇)))
55 eqid 2730 . . 3 (Base‘𝑈) = (Base‘𝑈)
56 eqid 2730 . . 3 (+g𝑈) = (+g𝑈)
57 eqid 2730 . . 3 (0g𝑈) = (0g𝑈)
5855, 6, 56, 23, 57, 50ismhm 18719 . 2 ((𝐹𝑋) ∈ (𝑈 MndHom 𝑇) ↔ ((𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ∧ ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇))))
594, 54, 58sylanbrc 583 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668   MndHom cmhm 18715  SubMndcsubmnd 18716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718
This theorem is referenced by:  resrhm  20517  dchrghm  27174
  Copyright terms: Public domain W3C validator