Step | Hyp | Ref
| Expression |
1 | | mhmrcl2 18611 |
. . 3
β’ (πΉ β (π MndHom π) β π β Mnd) |
2 | | resmhm.u |
. . . 4
β’ π = (π βΎs π) |
3 | 2 | submmnd 18629 |
. . 3
β’ (π β (SubMndβπ) β π β Mnd) |
4 | 1, 3 | anim12ci 615 |
. 2
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (π β Mnd β§ π β Mnd)) |
5 | | eqid 2733 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
6 | | eqid 2733 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
7 | 5, 6 | mhmf 18612 |
. . . . 5
β’ (πΉ β (π MndHom π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
8 | 5 | submss 18625 |
. . . . 5
β’ (π β (SubMndβπ) β π β (Baseβπ)) |
9 | | fssres 6709 |
. . . . 5
β’ ((πΉ:(Baseβπ)βΆ(Baseβπ) β§ π β (Baseβπ)) β (πΉ βΎ π):πβΆ(Baseβπ)) |
10 | 7, 8, 9 | syl2an 597 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉ βΎ π):πβΆ(Baseβπ)) |
11 | 8 | adantl 483 |
. . . . . 6
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β π β (Baseβπ)) |
12 | 2, 5 | ressbas2 17125 |
. . . . . 6
β’ (π β (Baseβπ) β π = (Baseβπ)) |
13 | 11, 12 | syl 17 |
. . . . 5
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β π = (Baseβπ)) |
14 | 13 | feq2d 6655 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β ((πΉ βΎ π):πβΆ(Baseβπ) β (πΉ βΎ π):(Baseβπ)βΆ(Baseβπ))) |
15 | 10, 14 | mpbid 231 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉ βΎ π):(Baseβπ)βΆ(Baseβπ)) |
16 | | simpll 766 |
. . . . . . 7
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β πΉ β (π MndHom π)) |
17 | 8 | ad2antlr 726 |
. . . . . . . 8
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β π β (Baseβπ)) |
18 | | simprl 770 |
. . . . . . . 8
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β π₯ β π) |
19 | 17, 18 | sseldd 3946 |
. . . . . . 7
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β π₯ β (Baseβπ)) |
20 | | simprr 772 |
. . . . . . . 8
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β π¦ β π) |
21 | 17, 20 | sseldd 3946 |
. . . . . . 7
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β π¦ β (Baseβπ)) |
22 | | eqid 2733 |
. . . . . . . 8
β’
(+gβπ) = (+gβπ) |
23 | | eqid 2733 |
. . . . . . . 8
β’
(+gβπ) = (+gβπ) |
24 | 5, 22, 23 | mhmlin 18614 |
. . . . . . 7
β’ ((πΉ β (π MndHom π) β§ π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
25 | 16, 19, 21, 24 | syl3anc 1372 |
. . . . . 6
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β (πΉβ(π₯(+gβπ)π¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
26 | 22 | submcl 18628 |
. . . . . . . . 9
β’ ((π β (SubMndβπ) β§ π₯ β π β§ π¦ β π) β (π₯(+gβπ)π¦) β π) |
27 | 26 | 3expb 1121 |
. . . . . . . 8
β’ ((π β (SubMndβπ) β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβπ)π¦) β π) |
28 | 27 | adantll 713 |
. . . . . . 7
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβπ)π¦) β π) |
29 | 28 | fvresd 6863 |
. . . . . 6
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β ((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (πΉβ(π₯(+gβπ)π¦))) |
30 | | fvres 6862 |
. . . . . . . 8
β’ (π₯ β π β ((πΉ βΎ π)βπ₯) = (πΉβπ₯)) |
31 | | fvres 6862 |
. . . . . . . 8
β’ (π¦ β π β ((πΉ βΎ π)βπ¦) = (πΉβπ¦)) |
32 | 30, 31 | oveqan12d 7377 |
. . . . . . 7
β’ ((π₯ β π β§ π¦ β π) β (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
33 | 32 | adantl 483 |
. . . . . 6
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)) = ((πΉβπ₯)(+gβπ)(πΉβπ¦))) |
34 | 25, 29, 33 | 3eqtr4d 2783 |
. . . . 5
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ (π₯ β π β§ π¦ β π)) β ((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦))) |
35 | 34 | ralrimivva 3194 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β βπ₯ β π βπ¦ β π ((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦))) |
36 | 2, 22 | ressplusg 17176 |
. . . . . . . . 9
β’ (π β (SubMndβπ) β
(+gβπ) =
(+gβπ)) |
37 | 36 | adantl 483 |
. . . . . . . 8
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (+gβπ) = (+gβπ)) |
38 | 37 | oveqd 7375 |
. . . . . . 7
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (π₯(+gβπ)π¦) = (π₯(+gβπ)π¦)) |
39 | 38 | fveqeq2d 6851 |
. . . . . 6
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)) β ((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)))) |
40 | 13, 39 | raleqbidv 3318 |
. . . . 5
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (βπ¦ β π ((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)) β βπ¦ β (Baseβπ)((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)))) |
41 | 13, 40 | raleqbidv 3318 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (βπ₯ β π βπ¦ β π ((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)) β βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)))) |
42 | 35, 41 | mpbid 231 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦))) |
43 | | eqid 2733 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
44 | 43 | subm0cl 18627 |
. . . . . 6
β’ (π β (SubMndβπ) β
(0gβπ)
β π) |
45 | 44 | adantl 483 |
. . . . 5
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (0gβπ) β π) |
46 | 45 | fvresd 6863 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β ((πΉ βΎ π)β(0gβπ)) = (πΉβ(0gβπ))) |
47 | 2, 43 | subm0 18631 |
. . . . . 6
β’ (π β (SubMndβπ) β
(0gβπ) =
(0gβπ)) |
48 | 47 | adantl 483 |
. . . . 5
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (0gβπ) = (0gβπ)) |
49 | 48 | fveq2d 6847 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β ((πΉ βΎ π)β(0gβπ)) = ((πΉ βΎ π)β(0gβπ))) |
50 | | eqid 2733 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
51 | 43, 50 | mhm0 18615 |
. . . . 5
β’ (πΉ β (π MndHom π) β (πΉβ(0gβπ)) = (0gβπ)) |
52 | 51 | adantr 482 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉβ(0gβπ)) = (0gβπ)) |
53 | 46, 49, 52 | 3eqtr3d 2781 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β ((πΉ βΎ π)β(0gβπ)) = (0gβπ)) |
54 | 15, 42, 53 | 3jca 1129 |
. 2
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β ((πΉ βΎ π):(Baseβπ)βΆ(Baseβπ) β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)) β§ ((πΉ βΎ π)β(0gβπ)) = (0gβπ))) |
55 | | eqid 2733 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
56 | | eqid 2733 |
. . 3
β’
(+gβπ) = (+gβπ) |
57 | | eqid 2733 |
. . 3
β’
(0gβπ) = (0gβπ) |
58 | 55, 6, 56, 23, 57, 50 | ismhm 18608 |
. 2
β’ ((πΉ βΎ π) β (π MndHom π) β ((π β Mnd β§ π β Mnd) β§ ((πΉ βΎ π):(Baseβπ)βΆ(Baseβπ) β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)((πΉ βΎ π)β(π₯(+gβπ)π¦)) = (((πΉ βΎ π)βπ₯)(+gβπ)((πΉ βΎ π)βπ¦)) β§ ((πΉ βΎ π)β(0gβπ)) = (0gβπ)))) |
59 | 4, 54, 58 | sylanbrc 584 |
1
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉ βΎ π) β (π MndHom π)) |