MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm Structured version   Visualization version   GIF version

Theorem resmhm 18730
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resmhm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resmhm ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))

Proof of Theorem resmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 18698 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
2 resmhm.u . . . 4 𝑈 = (𝑆s 𝑋)
32submmnd 18723 . . 3 (𝑋 ∈ (SubMnd‘𝑆) → 𝑈 ∈ Mnd)
41, 3anim12ci 614 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd))
5 eqid 2733 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2733 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
75, 6mhmf 18699 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
85submss 18719 . . . . 5 (𝑋 ∈ (SubMnd‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
9 fssres 6694 . . . . 5 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
107, 8, 9syl2an 596 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
118adantl 481 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
122, 5ressbas2 17151 . . . . . 6 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1311, 12syl 17 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 = (Base‘𝑈))
1413feq2d 6640 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1510, 14mpbid 232 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
16 simpll 766 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
178ad2antlr 727 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑆))
18 simprl 770 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
1917, 18sseldd 3931 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (Base‘𝑆))
20 simprr 772 . . . . . . . 8 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
2117, 20sseldd 3931 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (Base‘𝑆))
22 eqid 2733 . . . . . . . 8 (+g𝑆) = (+g𝑆)
23 eqid 2733 . . . . . . . 8 (+g𝑇) = (+g𝑇)
245, 22, 23mhmlin 18703 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2516, 19, 21, 24syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2622submcl 18722 . . . . . . . . 9 ((𝑋 ∈ (SubMnd‘𝑆) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
27263expb 1120 . . . . . . . 8 ((𝑋 ∈ (SubMnd‘𝑆) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
2827adantll 714 . . . . . . 7 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(+g𝑆)𝑦) ∈ 𝑋)
2928fvresd 6848 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
30 fvres 6847 . . . . . . . 8 (𝑥𝑋 → ((𝐹𝑋)‘𝑥) = (𝐹𝑥))
31 fvres 6847 . . . . . . . 8 (𝑦𝑋 → ((𝐹𝑋)‘𝑦) = (𝐹𝑦))
3230, 31oveqan12d 7371 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3332adantl 481 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3425, 29, 333eqtr4d 2778 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
3534ralrimivva 3176 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
362, 22ressplusg 17197 . . . . . . . . 9 (𝑋 ∈ (SubMnd‘𝑆) → (+g𝑆) = (+g𝑈))
3736adantl 481 . . . . . . . 8 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (+g𝑆) = (+g𝑈))
3837oveqd 7369 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑥(+g𝑆)𝑦) = (𝑥(+g𝑈)𝑦))
3938fveqeq2d 6836 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4013, 39raleqbidv 3313 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4113, 40raleqbidv 3313 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑋)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦))))
4235, 41mpbid 232 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)))
43 eqid 2733 . . . . . . 7 (0g𝑆) = (0g𝑆)
4443subm0cl 18721 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑆) → (0g𝑆) ∈ 𝑋)
4544adantl 481 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g𝑆) ∈ 𝑋)
4645fvresd 6848 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑆)) = (𝐹‘(0g𝑆)))
472, 43subm0 18725 . . . . . 6 (𝑋 ∈ (SubMnd‘𝑆) → (0g𝑆) = (0g𝑈))
4847adantl 481 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g𝑆) = (0g𝑈))
4948fveq2d 6832 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑆)) = ((𝐹𝑋)‘(0g𝑈)))
50 eqid 2733 . . . . . 6 (0g𝑇) = (0g𝑇)
5143, 50mhm0 18704 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
5251adantr 480 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹‘(0g𝑆)) = (0g𝑇))
5346, 49, 523eqtr3d 2776 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇))
5415, 42, 533jca 1128 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ∧ ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇)))
55 eqid 2733 . . 3 (Base‘𝑈) = (Base‘𝑈)
56 eqid 2733 . . 3 (+g𝑈) = (+g𝑈)
57 eqid 2733 . . 3 (0g𝑈) = (0g𝑈)
5855, 6, 56, 23, 57, 50ismhm 18695 . 2 ((𝐹𝑋) ∈ (𝑈 MndHom 𝑇) ↔ ((𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ ((𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹𝑋)‘(𝑥(+g𝑈)𝑦)) = (((𝐹𝑋)‘𝑥)(+g𝑇)((𝐹𝑋)‘𝑦)) ∧ ((𝐹𝑋)‘(0g𝑈)) = (0g𝑇))))
594, 54, 58sylanbrc 583 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wss 3898  cres 5621  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  +gcplusg 17163  0gc0g 17345  Mndcmnd 18644   MndHom cmhm 18691  SubMndcsubmnd 18692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694
This theorem is referenced by:  resrhm  20518  dchrghm  27195
  Copyright terms: Public domain W3C validator