Step | Hyp | Ref
| Expression |
1 | | mhmrcl2 18349 |
. . 3
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) |
2 | | resmhm.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑋) |
3 | 2 | submmnd 18367 |
. . 3
⊢ (𝑋 ∈ (SubMnd‘𝑆) → 𝑈 ∈ Mnd) |
4 | 1, 3 | anim12ci 613 |
. 2
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd)) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) |
7 | 5, 6 | mhmf 18350 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
8 | 5 | submss 18363 |
. . . . 5
⊢ (𝑋 ∈ (SubMnd‘𝑆) → 𝑋 ⊆ (Base‘𝑆)) |
9 | | fssres 6624 |
. . . . 5
⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
10 | 7, 8, 9 | syl2an 595 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
11 | 8 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 ⊆ (Base‘𝑆)) |
12 | 2, 5 | ressbas2 16875 |
. . . . . 6
⊢ (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈)) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → 𝑋 = (Base‘𝑈)) |
14 | 13 | feq2d 6570 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇))) |
15 | 10, 14 | mpbid 231 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇)) |
16 | | simpll 763 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
17 | 8 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑆)) |
18 | | simprl 767 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
19 | 17, 18 | sseldd 3918 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑆)) |
20 | | simprr 769 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
21 | 17, 20 | sseldd 3918 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ (Base‘𝑆)) |
22 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑆) = (+g‘𝑆) |
23 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑇) = (+g‘𝑇) |
24 | 5, 22, 23 | mhmlin 18352 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
25 | 16, 19, 21, 24 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
26 | 22 | submcl 18366 |
. . . . . . . . 9
⊢ ((𝑋 ∈ (SubMnd‘𝑆) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
27 | 26 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝑋 ∈ (SubMnd‘𝑆) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
28 | 27 | adantll 710 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(+g‘𝑆)𝑦) ∈ 𝑋) |
29 | 28 | fvresd 6776 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (𝐹‘(𝑥(+g‘𝑆)𝑦))) |
30 | | fvres 6775 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑥) = (𝐹‘𝑥)) |
31 | | fvres 6775 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑦) = (𝐹‘𝑦)) |
32 | 30, 31 | oveqan12d 7274 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
33 | 32 | adantl 481 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
34 | 25, 29, 33 | 3eqtr4d 2788 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
35 | 34 | ralrimivva 3114 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
36 | 2, 22 | ressplusg 16926 |
. . . . . . . . 9
⊢ (𝑋 ∈ (SubMnd‘𝑆) →
(+g‘𝑆) =
(+g‘𝑈)) |
37 | 36 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (+g‘𝑆) = (+g‘𝑈)) |
38 | 37 | oveqd 7272 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝑥(+g‘𝑆)𝑦) = (𝑥(+g‘𝑈)𝑦)) |
39 | 38 | fveqeq2d 6764 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
40 | 13, 39 | raleqbidv 3327 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
41 | 13, 40 | raleqbidv 3327 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑆)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)))) |
42 | 35, 41 | mpbid 231 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦))) |
43 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
44 | 43 | subm0cl 18365 |
. . . . . 6
⊢ (𝑋 ∈ (SubMnd‘𝑆) →
(0g‘𝑆)
∈ 𝑋) |
45 | 44 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g‘𝑆) ∈ 𝑋) |
46 | 45 | fvresd 6776 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋)‘(0g‘𝑆)) = (𝐹‘(0g‘𝑆))) |
47 | 2, 43 | subm0 18369 |
. . . . . 6
⊢ (𝑋 ∈ (SubMnd‘𝑆) →
(0g‘𝑆) =
(0g‘𝑈)) |
48 | 47 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (0g‘𝑆) = (0g‘𝑈)) |
49 | 48 | fveq2d 6760 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋)‘(0g‘𝑆)) = ((𝐹 ↾ 𝑋)‘(0g‘𝑈))) |
50 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑇) = (0g‘𝑇) |
51 | 43, 50 | mhm0 18353 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
52 | 51 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
53 | 46, 49, 52 | 3eqtr3d 2786 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋)‘(0g‘𝑈)) = (0g‘𝑇)) |
54 | 15, 42, 53 | 3jca 1126 |
. 2
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → ((𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ∧ ((𝐹 ↾ 𝑋)‘(0g‘𝑈)) = (0g‘𝑇))) |
55 | | eqid 2738 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
56 | | eqid 2738 |
. . 3
⊢
(+g‘𝑈) = (+g‘𝑈) |
57 | | eqid 2738 |
. . 3
⊢
(0g‘𝑈) = (0g‘𝑈) |
58 | 55, 6, 56, 23, 57, 50 | ismhm 18347 |
. 2
⊢ ((𝐹 ↾ 𝑋) ∈ (𝑈 MndHom 𝑇) ↔ ((𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ ((𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)((𝐹 ↾ 𝑋)‘(𝑥(+g‘𝑈)𝑦)) = (((𝐹 ↾ 𝑋)‘𝑥)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑦)) ∧ ((𝐹 ↾ 𝑋)‘(0g‘𝑈)) = (0g‘𝑇)))) |
59 | 4, 54, 58 | sylanbrc 582 |
1
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 MndHom 𝑇)) |